{"title":"利用染料置换测定法监测消毒剂质量的可穿戴线†。","authors":"Pratham Joshi, Akhiya Shinde, Sukanya Sudhiram, Bibhu Ranjan Sarangi and Naresh Kumar Mani","doi":"10.1039/D4RA04379K","DOIUrl":null,"url":null,"abstract":"<p >This study employs zero-cost (≈0.01 $) and durable thread-based devices to evaluate the quality of simulated and commercial sanitizer samples through dye displacement assay (DDA). A diverse range of sanitizer compositions, including ethanol concentrations of 55%, 75%, and 95% (v/v), were analysed. This investigation encompasses an assessment of the marker type (Doms and Hauser brands) on the migration distance of the dye region marked on thread devices. Our results demonstrate a proportional increase in the migration distance of the dye with increasing ethanol concentrations due to a decrease in the coefficient of viscosity and solvation power of ethanol on dye molecules. Additionally, a field trial for the thorough assessment of commercial sanitizer quality using thread-based devices further underscores the efficacy of this methodology. A calibration plot for a braided thread with Doms marker dye provides a reliable means to quantitatively assess the ethanol content in different commercial sanitizer compositions. Our findings collectively highlight the significance of this innovative method as a valuable tool for quality control and assessment for public health and hygiene as well as for preparing us for another pandemic.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 50","pages":" 37155-37163"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra04379k?page=search","citationCount":"0","resultStr":"{\"title\":\"Wearable threads for monitoring sanitizer quality using dye displacement assay†\",\"authors\":\"Pratham Joshi, Akhiya Shinde, Sukanya Sudhiram, Bibhu Ranjan Sarangi and Naresh Kumar Mani\",\"doi\":\"10.1039/D4RA04379K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study employs zero-cost (≈0.01 $) and durable thread-based devices to evaluate the quality of simulated and commercial sanitizer samples through dye displacement assay (DDA). A diverse range of sanitizer compositions, including ethanol concentrations of 55%, 75%, and 95% (v/v), were analysed. This investigation encompasses an assessment of the marker type (Doms and Hauser brands) on the migration distance of the dye region marked on thread devices. Our results demonstrate a proportional increase in the migration distance of the dye with increasing ethanol concentrations due to a decrease in the coefficient of viscosity and solvation power of ethanol on dye molecules. Additionally, a field trial for the thorough assessment of commercial sanitizer quality using thread-based devices further underscores the efficacy of this methodology. A calibration plot for a braided thread with Doms marker dye provides a reliable means to quantitatively assess the ethanol content in different commercial sanitizer compositions. Our findings collectively highlight the significance of this innovative method as a valuable tool for quality control and assessment for public health and hygiene as well as for preparing us for another pandemic.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 50\",\"pages\":\" 37155-37163\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra04379k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra04379k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra04379k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Wearable threads for monitoring sanitizer quality using dye displacement assay†
This study employs zero-cost (≈0.01 $) and durable thread-based devices to evaluate the quality of simulated and commercial sanitizer samples through dye displacement assay (DDA). A diverse range of sanitizer compositions, including ethanol concentrations of 55%, 75%, and 95% (v/v), were analysed. This investigation encompasses an assessment of the marker type (Doms and Hauser brands) on the migration distance of the dye region marked on thread devices. Our results demonstrate a proportional increase in the migration distance of the dye with increasing ethanol concentrations due to a decrease in the coefficient of viscosity and solvation power of ethanol on dye molecules. Additionally, a field trial for the thorough assessment of commercial sanitizer quality using thread-based devices further underscores the efficacy of this methodology. A calibration plot for a braided thread with Doms marker dye provides a reliable means to quantitatively assess the ethanol content in different commercial sanitizer compositions. Our findings collectively highlight the significance of this innovative method as a valuable tool for quality control and assessment for public health and hygiene as well as for preparing us for another pandemic.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.