通过氧化锌纳米填料增强可回收 PVA/PVDF 聚合物共混物的特性

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical and Quantum Electronics Pub Date : 2024-11-20 DOI:10.1007/s11082-024-07816-3
Shivratan Saini, Vimala Dhayal, N. S. Leel,  Ravina, A. M. Quraishi, S. Z. Hashmi, Saurabh Dalela, B. L. Choudhary, P. A. Alvi
{"title":"通过氧化锌纳米填料增强可回收 PVA/PVDF 聚合物共混物的特性","authors":"Shivratan Saini,&nbsp;Vimala Dhayal,&nbsp;N. S. Leel,&nbsp; Ravina,&nbsp;A. M. Quraishi,&nbsp;S. Z. Hashmi,&nbsp;Saurabh Dalela,&nbsp;B. L. Choudhary,&nbsp;P. A. Alvi","doi":"10.1007/s11082-024-07816-3","DOIUrl":null,"url":null,"abstract":"<div><p>This article explores the reinforcement of the chief characteristics of the polymer blends made of polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) via incorporation of ZnO (zinc oxide) nanofiller. The resulting PVA/PVDF/ZnO polymer nanocomposites were fabricated by the solution casting approach and characterized by key techniques such as XRD, FESEM, UV-Vis-NIR photo-spectrometer, impedance analyzer and FTIR spectrometer to examine the enhancement in structural parameters, surface morphology, optical and electrical parameters, and mechanism of functional groups. respectively. By optimizing and enhancing the wt% of ZnO nanoparticles, the resulting nanocomposites demonstrate improved structural (increase in crystalline size from 63 nm to 70 nm, reduction in dislocation density from 9.61 × 10<sup>− 5</sup> to 6.49 × 10<sup>− 5</sup> m<sup>− 2</sup>) and optical parameters (reduction in optical bandgap from 5.02 eV to 4.44 eV, increase in refractive index and Urbach energy from 1.98 to 2.10 and 1.5 to 4.0 eV, respectively); and dielectric performance (augmentation in dielectric constant and ac conductivity from ~ 12 to 60 and 0.003 to 0.009 S/mm, respectively) making them appropriate for a broad range of industrial applications. In FTIR spectra, the transmittance peaks at 880 cm⁻¹ and 833 cm⁻¹ indicate the -C-C-C chain characteristic of PVDF, while peaks at 1402 cm⁻¹ and 2920 cm⁻¹ correspond to -CH₂ groups in both PVA and PVDF. Additionally, peaks at 1068 cm⁻¹ and 1704 cm⁻¹ relate to -C-O and -C = O stretching, and the broad peak from 3500 cm⁻¹ to 3800 cm⁻¹ represents hydroxyl groups, with intensity increased by ZnO nanofiller. The uniform dispersion of ZnO within the PVA/PVDF polymer blends plays a key role in reinforcing the interfacial bonding between the polymers, leading to superior structural integrity and enhanced recyclability. This approach offers a sustainable pathway for the progress of high-performance polymeric nanocomposites with potential applications in electronics.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcing the characteristics of recyclable PVA/PVDF polymer blends via ZnO nanofiller\",\"authors\":\"Shivratan Saini,&nbsp;Vimala Dhayal,&nbsp;N. S. Leel,&nbsp; Ravina,&nbsp;A. M. Quraishi,&nbsp;S. Z. Hashmi,&nbsp;Saurabh Dalela,&nbsp;B. L. Choudhary,&nbsp;P. A. Alvi\",\"doi\":\"10.1007/s11082-024-07816-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article explores the reinforcement of the chief characteristics of the polymer blends made of polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) via incorporation of ZnO (zinc oxide) nanofiller. The resulting PVA/PVDF/ZnO polymer nanocomposites were fabricated by the solution casting approach and characterized by key techniques such as XRD, FESEM, UV-Vis-NIR photo-spectrometer, impedance analyzer and FTIR spectrometer to examine the enhancement in structural parameters, surface morphology, optical and electrical parameters, and mechanism of functional groups. respectively. By optimizing and enhancing the wt% of ZnO nanoparticles, the resulting nanocomposites demonstrate improved structural (increase in crystalline size from 63 nm to 70 nm, reduction in dislocation density from 9.61 × 10<sup>− 5</sup> to 6.49 × 10<sup>− 5</sup> m<sup>− 2</sup>) and optical parameters (reduction in optical bandgap from 5.02 eV to 4.44 eV, increase in refractive index and Urbach energy from 1.98 to 2.10 and 1.5 to 4.0 eV, respectively); and dielectric performance (augmentation in dielectric constant and ac conductivity from ~ 12 to 60 and 0.003 to 0.009 S/mm, respectively) making them appropriate for a broad range of industrial applications. In FTIR spectra, the transmittance peaks at 880 cm⁻¹ and 833 cm⁻¹ indicate the -C-C-C chain characteristic of PVDF, while peaks at 1402 cm⁻¹ and 2920 cm⁻¹ correspond to -CH₂ groups in both PVA and PVDF. Additionally, peaks at 1068 cm⁻¹ and 1704 cm⁻¹ relate to -C-O and -C = O stretching, and the broad peak from 3500 cm⁻¹ to 3800 cm⁻¹ represents hydroxyl groups, with intensity increased by ZnO nanofiller. The uniform dispersion of ZnO within the PVA/PVDF polymer blends plays a key role in reinforcing the interfacial bonding between the polymers, leading to superior structural integrity and enhanced recyclability. This approach offers a sustainable pathway for the progress of high-performance polymeric nanocomposites with potential applications in electronics.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"56 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-024-07816-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07816-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了通过加入 ZnO(氧化锌)纳米填料来增强聚乙烯醇(PVA)和聚偏二氟乙烯(PVDF)聚合物混合物的主要特性。通过溶液浇注法制备了 PVA/PVDF/ZnO 聚合物纳米复合材料,并利用 XRD、FESEM、紫外-可见-近红外光谱仪、阻抗分析仪和傅立叶变换红外光谱仪等关键技术分别对其结构参数、表面形貌、光学和电学参数以及官能团机理进行了表征。通过优化和提高氧化锌纳米粒子的 wt%,纳米复合材料的结构参数(晶体尺寸从 63 nm 增加到 70 nm,位错密度从 9.61 × 10- 5 m- 2 降低到 6.49 × 10- 5 m- 2)和光学参数(光带隙从 5.02 eV 降低到 4.44 eV)都得到了改善。02 eV 降至 4.44 eV,折射率和厄巴赫能分别从 1.98 eV 增至 2.10 eV 和 1.5 eV 增至 4.0 eV);介电性能(介电常数和电导率分别从 ~ 12 增至 60 和从 0.003 S/mm 增至 0.009 S/mm)使其适用于广泛的工业应用。在傅立叶变换红外光谱中,880 cm-¹ 和 833 cm-¹ 处的透射峰表示 PVDF 的 -C-C-C 链特征,而 1402 cm-¹ 和 2920 cm-¹ 处的峰则对应于 PVA 和 PVDF 中的 -CH₂ 基团。此外,1068 cm-¹ 和 1704 cm-¹ 处的峰与 -C-O 和 -C = O 伸展有关,3500 cm-¹ 至 3800 cm-¹ 处的宽峰代表羟基,ZnO 纳米填料会增加其强度。ZnO 在 PVA/PVDF 聚合物共混物中的均匀分散在加强聚合物之间的界面结合方面发挥了关键作用,从而实现了优异的结构完整性并提高了可回收性。这种方法为高性能聚合物纳米复合材料的发展提供了一条可持续的途径,有望应用于电子领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcing the characteristics of recyclable PVA/PVDF polymer blends via ZnO nanofiller

This article explores the reinforcement of the chief characteristics of the polymer blends made of polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) via incorporation of ZnO (zinc oxide) nanofiller. The resulting PVA/PVDF/ZnO polymer nanocomposites were fabricated by the solution casting approach and characterized by key techniques such as XRD, FESEM, UV-Vis-NIR photo-spectrometer, impedance analyzer and FTIR spectrometer to examine the enhancement in structural parameters, surface morphology, optical and electrical parameters, and mechanism of functional groups. respectively. By optimizing and enhancing the wt% of ZnO nanoparticles, the resulting nanocomposites demonstrate improved structural (increase in crystalline size from 63 nm to 70 nm, reduction in dislocation density from 9.61 × 10− 5 to 6.49 × 10− 5 m− 2) and optical parameters (reduction in optical bandgap from 5.02 eV to 4.44 eV, increase in refractive index and Urbach energy from 1.98 to 2.10 and 1.5 to 4.0 eV, respectively); and dielectric performance (augmentation in dielectric constant and ac conductivity from ~ 12 to 60 and 0.003 to 0.009 S/mm, respectively) making them appropriate for a broad range of industrial applications. In FTIR spectra, the transmittance peaks at 880 cm⁻¹ and 833 cm⁻¹ indicate the -C-C-C chain characteristic of PVDF, while peaks at 1402 cm⁻¹ and 2920 cm⁻¹ correspond to -CH₂ groups in both PVA and PVDF. Additionally, peaks at 1068 cm⁻¹ and 1704 cm⁻¹ relate to -C-O and -C = O stretching, and the broad peak from 3500 cm⁻¹ to 3800 cm⁻¹ represents hydroxyl groups, with intensity increased by ZnO nanofiller. The uniform dispersion of ZnO within the PVA/PVDF polymer blends plays a key role in reinforcing the interfacial bonding between the polymers, leading to superior structural integrity and enhanced recyclability. This approach offers a sustainable pathway for the progress of high-performance polymeric nanocomposites with potential applications in electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
期刊最新文献
Strain modified nano-scale Ge/Ge0.98Sn0.02 exotic pin photo-sensor array for IR sensing: theoretical reliability and experimental feasibility studies Retraction Note: Optical bio sensor based cancer cell detection using optimized machine learning model with quantum computing Effect of indium molar content in AlxInyGa(1-x–y)N/AlaGabN orderly quantized integrated quantum barrier for highly efficient droop free UV-C LEDs High dense cadmium lead-borate glasses: fabrication, physical properties and capability for γ-ray and neutron shields An investigation on spectroscopic, linear and nonlinear optical parameters of a potential NLO compound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1