Doua Abdallaoui, Afak Meftah, Nouredine Sengouga, Maroua Abdallaoui, Madani Labed
{"title":"通过掺杂 HTL 和 ETL 层提高 MAPb0.75Sn0.25I3 太阳能电池的效率","authors":"Doua Abdallaoui, Afak Meftah, Nouredine Sengouga, Maroua Abdallaoui, Madani Labed","doi":"10.1007/s11082-024-07812-7","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulation of a lead–tin perovskite (MAPb0.75Sn<sub>0.25</sub>I<sub>3</sub>) solar cell was conducted. The simulation was validated against measurements (Li et al., J. Mater. Chem. C Mater. 5:2360–2367, 2017) and the photovoltaic conversion efficiency (PCE) closely matched the measured value, 12.19≈12.08%. Subsequently, optimization strategies to enhance the SC performance were pursued. Doping hole and electron transport layers (HTL, ETL) with various elements as well as adjusting HTL, ETL, and perovskite thicknesses have improved PCE and carriers’ extraction. These optimizations led to an enhancement in PCE to 12.93%. Further improvements using Copper oxide (Cu<sub>2</sub>O) as HTL yielded a PCE of 13.38%. Doping Cu<sub>2</sub>O with Tellurium pushed PCE to 14.73%. Copper doping of Zinc Oxide outperformed other ETLs and increased PCE to 15.33%. Overall, these findings represent significant strides in advancing the design of perovskite solar cells, providing valuable insights for further enhancements in photovoltaic conversion efficiency.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of MAPb0.75Sn0.25I3 solar cell efficiency by doping HTL and ETL layers\",\"authors\":\"Doua Abdallaoui, Afak Meftah, Nouredine Sengouga, Maroua Abdallaoui, Madani Labed\",\"doi\":\"10.1007/s11082-024-07812-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerical simulation of a lead–tin perovskite (MAPb0.75Sn<sub>0.25</sub>I<sub>3</sub>) solar cell was conducted. The simulation was validated against measurements (Li et al., J. Mater. Chem. C Mater. 5:2360–2367, 2017) and the photovoltaic conversion efficiency (PCE) closely matched the measured value, 12.19≈12.08%. Subsequently, optimization strategies to enhance the SC performance were pursued. Doping hole and electron transport layers (HTL, ETL) with various elements as well as adjusting HTL, ETL, and perovskite thicknesses have improved PCE and carriers’ extraction. These optimizations led to an enhancement in PCE to 12.93%. Further improvements using Copper oxide (Cu<sub>2</sub>O) as HTL yielded a PCE of 13.38%. Doping Cu<sub>2</sub>O with Tellurium pushed PCE to 14.73%. Copper doping of Zinc Oxide outperformed other ETLs and increased PCE to 15.33%. Overall, these findings represent significant strides in advancing the design of perovskite solar cells, providing valuable insights for further enhancements in photovoltaic conversion efficiency.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"56 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-024-07812-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07812-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancement of MAPb0.75Sn0.25I3 solar cell efficiency by doping HTL and ETL layers
Numerical simulation of a lead–tin perovskite (MAPb0.75Sn0.25I3) solar cell was conducted. The simulation was validated against measurements (Li et al., J. Mater. Chem. C Mater. 5:2360–2367, 2017) and the photovoltaic conversion efficiency (PCE) closely matched the measured value, 12.19≈12.08%. Subsequently, optimization strategies to enhance the SC performance were pursued. Doping hole and electron transport layers (HTL, ETL) with various elements as well as adjusting HTL, ETL, and perovskite thicknesses have improved PCE and carriers’ extraction. These optimizations led to an enhancement in PCE to 12.93%. Further improvements using Copper oxide (Cu2O) as HTL yielded a PCE of 13.38%. Doping Cu2O with Tellurium pushed PCE to 14.73%. Copper doping of Zinc Oxide outperformed other ETLs and increased PCE to 15.33%. Overall, these findings represent significant strides in advancing the design of perovskite solar cells, providing valuable insights for further enhancements in photovoltaic conversion efficiency.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.