载荷和腐蚀环境耦合下螺柱疲劳特性的实验研究

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2024-11-19 DOI:10.1617/s11527-024-02519-3
Yachuan Kuang, Sihui Peng, Liping Wang, Libin Chen, Weikang Li
{"title":"载荷和腐蚀环境耦合下螺柱疲劳特性的实验研究","authors":"Yachuan Kuang,&nbsp;Sihui Peng,&nbsp;Liping Wang,&nbsp;Libin Chen,&nbsp;Weikang Li","doi":"10.1617/s11527-024-02519-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the influence of the coupling of load and corrosion environment on the fatigue properties of studs. Static tests were conducted on two push-out specimens, and fatigue tests were performed on six push-out specimens after three cycles of corrosion and fatigue alternation. The findings were compared with fatigue test results from push-out specimens subjected to pure corrosion. The analysis focused on the effects of the load and corrosion environment coupling on failure modes, fatigue life, fatigue crack length, and relative slip at the interface of the studs. The results indicated that the failure modes of all push-out specimens in both static and fatigue tests were stud shear failure. Shear failure occurred at the root of studs. Furthermore, the fatigue life of the studs decreased exponentially as corrosion ratios increased. An increase in the number of pre-fatigue cycles intensified the coupling effect of load and corrosion environment on fatigue life. The length of the fatigue fracture surface in the studs also exhibited an exponential decrease with increasing corrosion ratios. Additionally, higher corrosion ratios and a greater number of pre-fatigue cycles resulted in an accelerated the relative slip growth rate at the interface between concrete flange slabs and steel girders. The relative slip curve at the interface displayed a distinct two-stage development pattern: a stable growth stage and a rapid growth stage. The coupling effect of load and corrosion environment significantly enhanced the relative slip growth rate at the interface. This effect was amplified with increased pre-fatigue cycles and higher corrosion ratios, leading to a faster relative slip growth rate at the interface.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on the fatigue properties of studs under the coupling of load and corrosion environment\",\"authors\":\"Yachuan Kuang,&nbsp;Sihui Peng,&nbsp;Liping Wang,&nbsp;Libin Chen,&nbsp;Weikang Li\",\"doi\":\"10.1617/s11527-024-02519-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the influence of the coupling of load and corrosion environment on the fatigue properties of studs. Static tests were conducted on two push-out specimens, and fatigue tests were performed on six push-out specimens after three cycles of corrosion and fatigue alternation. The findings were compared with fatigue test results from push-out specimens subjected to pure corrosion. The analysis focused on the effects of the load and corrosion environment coupling on failure modes, fatigue life, fatigue crack length, and relative slip at the interface of the studs. The results indicated that the failure modes of all push-out specimens in both static and fatigue tests were stud shear failure. Shear failure occurred at the root of studs. Furthermore, the fatigue life of the studs decreased exponentially as corrosion ratios increased. An increase in the number of pre-fatigue cycles intensified the coupling effect of load and corrosion environment on fatigue life. The length of the fatigue fracture surface in the studs also exhibited an exponential decrease with increasing corrosion ratios. Additionally, higher corrosion ratios and a greater number of pre-fatigue cycles resulted in an accelerated the relative slip growth rate at the interface between concrete flange slabs and steel girders. The relative slip curve at the interface displayed a distinct two-stage development pattern: a stable growth stage and a rapid growth stage. The coupling effect of load and corrosion environment significantly enhanced the relative slip growth rate at the interface. This effect was amplified with increased pre-fatigue cycles and higher corrosion ratios, leading to a faster relative slip growth rate at the interface.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"57 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02519-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02519-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了载荷和腐蚀环境耦合对螺柱疲劳特性的影响。对两个顶出试样进行了静态测试,并对六个顶出试样进行了疲劳测试,测试过程经历了三个腐蚀和疲劳交替循环。测试结果与纯腐蚀条件下推出试样的疲劳测试结果进行了比较。分析的重点是载荷和腐蚀环境耦合对失效模式、疲劳寿命、疲劳裂纹长度和螺柱界面相对滑移的影响。结果表明,在静态和疲劳试验中,所有推出试样的失效模式都是螺柱剪切失效。剪切破坏发生在螺栓根部。此外,随着腐蚀比的增加,螺柱的疲劳寿命呈指数下降。预疲劳循环次数的增加加剧了载荷和腐蚀环境对疲劳寿命的耦合效应。螺柱疲劳断裂面的长度也随着腐蚀比的增加呈指数下降。此外,腐蚀比越高,预疲劳循环次数越多,混凝土翼缘板与钢梁界面处的相对滑移增长率也越快。界面处的相对滑移曲线显示出明显的两阶段发展模式:稳定增长阶段和快速增长阶段。荷载和腐蚀环境的耦合效应显著提高了界面处的相对滑移增长率。随着预疲劳周期的增加和腐蚀比的提高,这种效应被放大,导致界面处的相对滑移增长速度加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation on the fatigue properties of studs under the coupling of load and corrosion environment

This study investigated the influence of the coupling of load and corrosion environment on the fatigue properties of studs. Static tests were conducted on two push-out specimens, and fatigue tests were performed on six push-out specimens after three cycles of corrosion and fatigue alternation. The findings were compared with fatigue test results from push-out specimens subjected to pure corrosion. The analysis focused on the effects of the load and corrosion environment coupling on failure modes, fatigue life, fatigue crack length, and relative slip at the interface of the studs. The results indicated that the failure modes of all push-out specimens in both static and fatigue tests were stud shear failure. Shear failure occurred at the root of studs. Furthermore, the fatigue life of the studs decreased exponentially as corrosion ratios increased. An increase in the number of pre-fatigue cycles intensified the coupling effect of load and corrosion environment on fatigue life. The length of the fatigue fracture surface in the studs also exhibited an exponential decrease with increasing corrosion ratios. Additionally, higher corrosion ratios and a greater number of pre-fatigue cycles resulted in an accelerated the relative slip growth rate at the interface between concrete flange slabs and steel girders. The relative slip curve at the interface displayed a distinct two-stage development pattern: a stable growth stage and a rapid growth stage. The coupling effect of load and corrosion environment significantly enhanced the relative slip growth rate at the interface. This effect was amplified with increased pre-fatigue cycles and higher corrosion ratios, leading to a faster relative slip growth rate at the interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
Effect of coarse recycled aggregate with embedded fibres on the mechanical properties and microstructure of polypropylene fibre-reinforced concrete Effect of emulsifier type on the properties of cement asphalt mortar for non-ballast slab tracks Effect of sulfate attack on geopolymer mortars at early ages of exposure Development and validation of an innovative Hybrid Laminate Material for the blast and fire protection of structures Experimental investigation on the fatigue properties of studs under the coupling of load and corrosion environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1