敷料与修补:如何提取和解释量具不变内容

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Foundations of Physics Pub Date : 2024-11-19 DOI:10.1007/s10701-024-00809-y
P. Berghofer, J. François
{"title":"敷料与修补:如何提取和解释量具不变内容","authors":"P. Berghofer,&nbsp;J. François","doi":"10.1007/s10701-024-00809-y","DOIUrl":null,"url":null,"abstract":"<div><p>There is solid consensus among physicists and philosophers that, in gauge field theory, for a quantity to be physically meaningful or real, it must be gauge-invariant. Yet, every “elementary” field in the Standard Model of particle physics is actually gauge-variant. This has led a number of researchers to insist that new manifestly gauge-invariant approaches must be established. Indeed, in the foundational literature, dissatisfaction with standard methods for reducing gauge symmetries has been expressed: Spontaneous symmetry breaking is deemed conceptually dubious, while gauge fixing suffers the same limitations and is subject to the same criticisms as coordinate choices in General Relativity. An alternative gauge-invariant proposal was recently introduced in the literature, the so-called “dressing field method” (DFM). It is a mathematically subtle tool, and unfortunately prone to be confused with simple gauge transformations, hence with standard gauge fixings. As a matter of fact, in the physics literature the two are often conflated, and in the philosophy community some doubts have been raised about whether there is any substantial difference between them. Clarifying this issue is of special significance for anyone interested in both the foundational issues of gauge theories and their invariant formulation. It is thus our objective to establish as precisely as possible the technical and conceptual distinctions between the DFM and gauge fixing.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00809-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Dressing vs. Fixing: On How to Extract and Interpret Gauge-Invariant Content\",\"authors\":\"P. Berghofer,&nbsp;J. François\",\"doi\":\"10.1007/s10701-024-00809-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is solid consensus among physicists and philosophers that, in gauge field theory, for a quantity to be physically meaningful or real, it must be gauge-invariant. Yet, every “elementary” field in the Standard Model of particle physics is actually gauge-variant. This has led a number of researchers to insist that new manifestly gauge-invariant approaches must be established. Indeed, in the foundational literature, dissatisfaction with standard methods for reducing gauge symmetries has been expressed: Spontaneous symmetry breaking is deemed conceptually dubious, while gauge fixing suffers the same limitations and is subject to the same criticisms as coordinate choices in General Relativity. An alternative gauge-invariant proposal was recently introduced in the literature, the so-called “dressing field method” (DFM). It is a mathematically subtle tool, and unfortunately prone to be confused with simple gauge transformations, hence with standard gauge fixings. As a matter of fact, in the physics literature the two are often conflated, and in the philosophy community some doubts have been raised about whether there is any substantial difference between them. Clarifying this issue is of special significance for anyone interested in both the foundational issues of gauge theories and their invariant formulation. It is thus our objective to establish as precisely as possible the technical and conceptual distinctions between the DFM and gauge fixing.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"54 6\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10701-024-00809-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-024-00809-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-024-00809-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

物理学家和哲学家们有一个坚实的共识,即在规整场理论中,一个量要具有物理意义或真实,它必须是规整不变的。然而,粒子物理学标准模型中的每一个 "基本 "场实际上都是规整不变的。这使得一些研究人员坚持认为,必须建立新的明显的规整不变方法。事实上,在基础文献中,人们已经表达了对降低规整对称性的标准方法的不满:自发对称破缺在概念上被认为是可疑的,而轨距固定与广义相对论中的坐标选择一样,受到同样的限制和批评。最近,文献中提出了另一种轨距不变的建议,即所谓的 "敷料场法"(DFM)。这是一种数学上精妙的工具,不幸的是容易与简单的轨距变换混淆,因此也容易与标准的轨距固定混淆。事实上,在物理学文献中,这两者经常被混为一谈,而在哲学界,也有人怀疑它们之间是否存在实质性的区别。澄清这个问题对于任何对规整理论的基础问题及其不变式感兴趣的人来说都具有特别重要的意义。因此,我们的目标是尽可能精确地确定 DFM 与轨距固定之间在技术和概念上的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dressing vs. Fixing: On How to Extract and Interpret Gauge-Invariant Content

There is solid consensus among physicists and philosophers that, in gauge field theory, for a quantity to be physically meaningful or real, it must be gauge-invariant. Yet, every “elementary” field in the Standard Model of particle physics is actually gauge-variant. This has led a number of researchers to insist that new manifestly gauge-invariant approaches must be established. Indeed, in the foundational literature, dissatisfaction with standard methods for reducing gauge symmetries has been expressed: Spontaneous symmetry breaking is deemed conceptually dubious, while gauge fixing suffers the same limitations and is subject to the same criticisms as coordinate choices in General Relativity. An alternative gauge-invariant proposal was recently introduced in the literature, the so-called “dressing field method” (DFM). It is a mathematically subtle tool, and unfortunately prone to be confused with simple gauge transformations, hence with standard gauge fixings. As a matter of fact, in the physics literature the two are often conflated, and in the philosophy community some doubts have been raised about whether there is any substantial difference between them. Clarifying this issue is of special significance for anyone interested in both the foundational issues of gauge theories and their invariant formulation. It is thus our objective to establish as precisely as possible the technical and conceptual distinctions between the DFM and gauge fixing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
期刊最新文献
Dressing vs. Fixing: On How to Extract and Interpret Gauge-Invariant Content The Determinacy Problem in Quantum Mechanics Complementary Detector and State Preparation Error and Classicality in the Spin-j Einstein–Podolsky–Rosen–Bohm Experiment Conservation Laws in Quantum Database Search Reply to Hofer-Szabó: The PBR Theorem hasn’t been Saved
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1