基于变压器结构和迁移训练模型的智能变电站继电保护系统故障诊断

Q2 Energy Energy Informatics Pub Date : 2024-11-19 DOI:10.1186/s42162-024-00429-w
Yao Mei, Saisai Ni, Haibo Zhang
{"title":"基于变压器结构和迁移训练模型的智能变电站继电保护系统故障诊断","authors":"Yao Mei,&nbsp;Saisai Ni,&nbsp;Haibo Zhang","doi":"10.1186/s42162-024-00429-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of global energy transformation, the construction of smart grids is becoming a novel vogue in the evolution of power systems. As the core node of the smart grid, the efficient operation of the intelligent substation relay protection system is essential to the safety and stability of the power system. However, with the expansion of power grid-scale and complexity, traditional relay protection systems need help with fault diagnosis accuracy and response speed. This study proposes a fault diagnosis scheme of an intelligent substation relay protection system based on Transformer architecture and migration training model, aiming at improving the intelligent level of fault diagnosis. By introducing the Transformer architecture, the model can efficiently process high-dimensional and nonlinear complex data of substations, significantly improving the accuracy of fault pattern recognition from 82% of the original model to 96%, and the response speed is also increased by 30%. At the same time, using transfer learning technology, the adaptability and generalization capabilities of the model in new scenarios have been significantly enhanced, reducing the dependence on a large amount of new data and accelerating the deployment of the model among different substations. The experimental results show that this scheme can quickly and accurately identify various fault types and effectively locate fault points. This study not only promotes the development of intelligent technology for power systems but also lays a solid foundation for the safe and stable operation of smart grids and the sustainable development of the power industry.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00429-w","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis of intelligent substation relay protection system based on transformer architecture and migration training model\",\"authors\":\"Yao Mei,&nbsp;Saisai Ni,&nbsp;Haibo Zhang\",\"doi\":\"10.1186/s42162-024-00429-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of global energy transformation, the construction of smart grids is becoming a novel vogue in the evolution of power systems. As the core node of the smart grid, the efficient operation of the intelligent substation relay protection system is essential to the safety and stability of the power system. However, with the expansion of power grid-scale and complexity, traditional relay protection systems need help with fault diagnosis accuracy and response speed. This study proposes a fault diagnosis scheme of an intelligent substation relay protection system based on Transformer architecture and migration training model, aiming at improving the intelligent level of fault diagnosis. By introducing the Transformer architecture, the model can efficiently process high-dimensional and nonlinear complex data of substations, significantly improving the accuracy of fault pattern recognition from 82% of the original model to 96%, and the response speed is also increased by 30%. At the same time, using transfer learning technology, the adaptability and generalization capabilities of the model in new scenarios have been significantly enhanced, reducing the dependence on a large amount of new data and accelerating the deployment of the model among different substations. The experimental results show that this scheme can quickly and accurately identify various fault types and effectively locate fault points. This study not only promotes the development of intelligent technology for power systems but also lays a solid foundation for the safe and stable operation of smart grids and the sustainable development of the power industry.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00429-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00429-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00429-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

在全球能源转型的大背景下,建设智能电网正成为电力系统发展的新潮流。作为智能电网的核心节点,智能变电站继电保护系统的高效运行对电力系统的安全稳定至关重要。然而,随着电网规模的扩大和复杂程度的提高,传统的继电保护系统在故障诊断精度和响应速度方面亟待提高。本研究提出了一种基于 Transformer 架构和迁移训练模型的智能变电站继电保护系统故障诊断方案,旨在提高故障诊断的智能化水平。通过引入 Transformer 体系结构,该模型可以高效处理变电站的高维、非线性复杂数据,故障模式识别准确率从原模型的 82% 显著提高到 96%,响应速度也提高了 30%。同时,利用迁移学习技术,模型在新场景下的适应性和泛化能力显著增强,减少了对大量新数据的依赖,加快了模型在不同变电站间的部署。实验结果表明,该方案能够快速准确地识别各种故障类型,有效定位故障点。这项研究不仅推动了电力系统智能化技术的发展,也为智能电网的安全稳定运行和电力行业的可持续发展奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault diagnosis of intelligent substation relay protection system based on transformer architecture and migration training model

In the context of global energy transformation, the construction of smart grids is becoming a novel vogue in the evolution of power systems. As the core node of the smart grid, the efficient operation of the intelligent substation relay protection system is essential to the safety and stability of the power system. However, with the expansion of power grid-scale and complexity, traditional relay protection systems need help with fault diagnosis accuracy and response speed. This study proposes a fault diagnosis scheme of an intelligent substation relay protection system based on Transformer architecture and migration training model, aiming at improving the intelligent level of fault diagnosis. By introducing the Transformer architecture, the model can efficiently process high-dimensional and nonlinear complex data of substations, significantly improving the accuracy of fault pattern recognition from 82% of the original model to 96%, and the response speed is also increased by 30%. At the same time, using transfer learning technology, the adaptability and generalization capabilities of the model in new scenarios have been significantly enhanced, reducing the dependence on a large amount of new data and accelerating the deployment of the model among different substations. The experimental results show that this scheme can quickly and accurately identify various fault types and effectively locate fault points. This study not only promotes the development of intelligent technology for power systems but also lays a solid foundation for the safe and stable operation of smart grids and the sustainable development of the power industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Building energy efficiency evaluation based on fusion weight method and grey clustering method Economic optimization scheduling of microgrid group based on chaotic mapping optimization BOA algorithm Loss reduction optimization strategies for medium and low-voltage distribution networks based on Intelligent optimization algorithms Multiobjective optimization for sizing and placing electric vehicle charging stations considering comprehensive uncertainties Multistep Brent oil price forecasting with a multi-aspect aeta-heuristic optimization and ensemble deep learning model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1