{"title":"揭开厌氧膜生物反应器演变的神秘面纱:废水处理中的应用、污垢问题和未来展望","authors":"Ravi Kumar Parihar, Pappu Kumar Burnwal, Satyendra Prasad Chaurasia, Md Oayes Midda","doi":"10.1007/s11157-024-09710-6","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past 45 years, anaerobic membrane bioreactor (AnMBR) technology has transitioned from laboratory-scale research to widespread successful implementation in various wastewater treatment applications, as part of sustainable technology initiatives. Compared to aerobic membrane bioreactor (AeMBR) and conventional anaerobic treatment methods, AnMBR offers numerous well-documented advantages, including efficient reduction of chemical oxygen demand (COD), conversion of organic waste into useful biogas, and production of treated effluent with less sludge generation. Nevertheless, employing AnMBR for treating low to moderate strength wastewater, such as domestic and municipal wastewater, continues to pose challenges due to concerns regarding membrane fouling and low bioenergy recovery efficiency. This article features last 11 year’s publication statistics to visualize global research trends covering the historical development of AnMBRs and related areas, emphasizing key innovations and technological milestones that have driven their evolution in reactor configurations. It includes a performance comparison of AnMBRs across different wastewater treatments, presenting a tabulated analysis and critically discussed various performance parameters such as, COD removal efficiency, biogas production, biomass retention, and sludge generation. The discussion also covered the impact of operational and design parameters on AnMBR performance to enhance the depth of analysis. Despite its effectiveness, AnMBR frequently suffers from substantial membrane fouling and low degradation rate. While addressing such issues, this article also explores both conventional and modified approaches, including the use of bioelectrochemical techniques for fouling control and enhanced methane recovery. Finally, this paper highlights a comprehensive overview and identifies potential areas for future research pertaining to the prevailing issues.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"23 4","pages":"949 - 988"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the evolution of anaerobic membrane bioreactors: applications, fouling issues, and future perspective in wastewater treatment\",\"authors\":\"Ravi Kumar Parihar, Pappu Kumar Burnwal, Satyendra Prasad Chaurasia, Md Oayes Midda\",\"doi\":\"10.1007/s11157-024-09710-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past 45 years, anaerobic membrane bioreactor (AnMBR) technology has transitioned from laboratory-scale research to widespread successful implementation in various wastewater treatment applications, as part of sustainable technology initiatives. Compared to aerobic membrane bioreactor (AeMBR) and conventional anaerobic treatment methods, AnMBR offers numerous well-documented advantages, including efficient reduction of chemical oxygen demand (COD), conversion of organic waste into useful biogas, and production of treated effluent with less sludge generation. Nevertheless, employing AnMBR for treating low to moderate strength wastewater, such as domestic and municipal wastewater, continues to pose challenges due to concerns regarding membrane fouling and low bioenergy recovery efficiency. This article features last 11 year’s publication statistics to visualize global research trends covering the historical development of AnMBRs and related areas, emphasizing key innovations and technological milestones that have driven their evolution in reactor configurations. It includes a performance comparison of AnMBRs across different wastewater treatments, presenting a tabulated analysis and critically discussed various performance parameters such as, COD removal efficiency, biogas production, biomass retention, and sludge generation. The discussion also covered the impact of operational and design parameters on AnMBR performance to enhance the depth of analysis. Despite its effectiveness, AnMBR frequently suffers from substantial membrane fouling and low degradation rate. While addressing such issues, this article also explores both conventional and modified approaches, including the use of bioelectrochemical techniques for fouling control and enhanced methane recovery. Finally, this paper highlights a comprehensive overview and identifies potential areas for future research pertaining to the prevailing issues.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":754,\"journal\":{\"name\":\"Reviews in Environmental Science and Bio/Technology\",\"volume\":\"23 4\",\"pages\":\"949 - 988\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Environmental Science and Bio/Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11157-024-09710-6\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-024-09710-6","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Unveiling the evolution of anaerobic membrane bioreactors: applications, fouling issues, and future perspective in wastewater treatment
Over the past 45 years, anaerobic membrane bioreactor (AnMBR) technology has transitioned from laboratory-scale research to widespread successful implementation in various wastewater treatment applications, as part of sustainable technology initiatives. Compared to aerobic membrane bioreactor (AeMBR) and conventional anaerobic treatment methods, AnMBR offers numerous well-documented advantages, including efficient reduction of chemical oxygen demand (COD), conversion of organic waste into useful biogas, and production of treated effluent with less sludge generation. Nevertheless, employing AnMBR for treating low to moderate strength wastewater, such as domestic and municipal wastewater, continues to pose challenges due to concerns regarding membrane fouling and low bioenergy recovery efficiency. This article features last 11 year’s publication statistics to visualize global research trends covering the historical development of AnMBRs and related areas, emphasizing key innovations and technological milestones that have driven their evolution in reactor configurations. It includes a performance comparison of AnMBRs across different wastewater treatments, presenting a tabulated analysis and critically discussed various performance parameters such as, COD removal efficiency, biogas production, biomass retention, and sludge generation. The discussion also covered the impact of operational and design parameters on AnMBR performance to enhance the depth of analysis. Despite its effectiveness, AnMBR frequently suffers from substantial membrane fouling and low degradation rate. While addressing such issues, this article also explores both conventional and modified approaches, including the use of bioelectrochemical techniques for fouling control and enhanced methane recovery. Finally, this paper highlights a comprehensive overview and identifies potential areas for future research pertaining to the prevailing issues.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.