Tuuli-Marjaana Koski, Bin Zhang, Jacob D. Wickham, Kathryn E. Bushley, Robert A. Blanchette, Le Kang, Jianghua Sun
{"title":"树皮下的化学作用:树皮甲虫、蛀木甲虫和蛀木甲虫及其微生物伙伴","authors":"Tuuli-Marjaana Koski, Bin Zhang, Jacob D. Wickham, Kathryn E. Bushley, Robert A. Blanchette, Le Kang, Jianghua Sun","doi":"10.1007/s11157-024-09709-z","DOIUrl":null,"url":null,"abstract":"<div><p>The view of insects and their microbiota as a holobiont is increasingly relevant as globalization and climate change aids the spread of pests to new areas. Examples of such pests include bark, ambrosia, and woodborer beetles (BAWBBs hereafter) that are important natural components of forest ecosystem processes, but may also cause substantial damage in native and invasive ranges. Microbiota has been shown to perform various functions for these beetles, but we are only beginning to reveal the complex chemically mediated interactions among the beetle, the host tree and their microbiota. In this review we a) summarize current knowledge about the influence of beetle ecology in the formation of the holobiont, b) how microbial compounds may function as beetle semiochemicals, and/or contribute to nutrient acquisition, defence, and maintenance of the holobiont, c) the influence of external factors that affect the holobiont, and d) pinpoint open questions and suggest potential methods needing attention in order to utilize this knowledge in of management of invasive or outbreaking BAWBBs.</p></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"23 4","pages":"923 - 948"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical interactions under the bark: bark-, ambrosia-, and wood-boring beetles and their microbial associates\",\"authors\":\"Tuuli-Marjaana Koski, Bin Zhang, Jacob D. Wickham, Kathryn E. Bushley, Robert A. Blanchette, Le Kang, Jianghua Sun\",\"doi\":\"10.1007/s11157-024-09709-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The view of insects and their microbiota as a holobiont is increasingly relevant as globalization and climate change aids the spread of pests to new areas. Examples of such pests include bark, ambrosia, and woodborer beetles (BAWBBs hereafter) that are important natural components of forest ecosystem processes, but may also cause substantial damage in native and invasive ranges. Microbiota has been shown to perform various functions for these beetles, but we are only beginning to reveal the complex chemically mediated interactions among the beetle, the host tree and their microbiota. In this review we a) summarize current knowledge about the influence of beetle ecology in the formation of the holobiont, b) how microbial compounds may function as beetle semiochemicals, and/or contribute to nutrient acquisition, defence, and maintenance of the holobiont, c) the influence of external factors that affect the holobiont, and d) pinpoint open questions and suggest potential methods needing attention in order to utilize this knowledge in of management of invasive or outbreaking BAWBBs.</p></div>\",\"PeriodicalId\":754,\"journal\":{\"name\":\"Reviews in Environmental Science and Bio/Technology\",\"volume\":\"23 4\",\"pages\":\"923 - 948\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Environmental Science and Bio/Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11157-024-09709-z\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-024-09709-z","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Chemical interactions under the bark: bark-, ambrosia-, and wood-boring beetles and their microbial associates
The view of insects and their microbiota as a holobiont is increasingly relevant as globalization and climate change aids the spread of pests to new areas. Examples of such pests include bark, ambrosia, and woodborer beetles (BAWBBs hereafter) that are important natural components of forest ecosystem processes, but may also cause substantial damage in native and invasive ranges. Microbiota has been shown to perform various functions for these beetles, but we are only beginning to reveal the complex chemically mediated interactions among the beetle, the host tree and their microbiota. In this review we a) summarize current knowledge about the influence of beetle ecology in the formation of the holobiont, b) how microbial compounds may function as beetle semiochemicals, and/or contribute to nutrient acquisition, defence, and maintenance of the holobiont, c) the influence of external factors that affect the holobiont, and d) pinpoint open questions and suggest potential methods needing attention in order to utilize this knowledge in of management of invasive or outbreaking BAWBBs.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.