Otavio A. D. Molitor, André H. A. Malavazi, Roberto Dobal Baldijão, Alexandre C. Orthey Jr., Ismael L. Paiva, Pedro R. Dieguez
{"title":"具有开放控制的量子开关不稳定性","authors":"Otavio A. D. Molitor, André H. A. Malavazi, Roberto Dobal Baldijão, Alexandre C. Orthey Jr., Ismael L. Paiva, Pedro R. Dieguez","doi":"10.1038/s42005-024-01843-y","DOIUrl":null,"url":null,"abstract":"The superposition of causal orders shows promise in various quantum technologies. However, the fragility of quantum systems arising from environmental interactions, leading to dissipative behavior and irreversibility, demands a deeper understanding of the possible instabilities in the coherent control of causal orders. In this work, we employ a collisional model to investigate the impact of an open control system on the generation of interference between two causal orders. We present the environmental instabilities for the switch of two arbitrary quantum operations and examine the influence of environmental temperature on each potential outcome of control post-selection. Additionally, we explore how environmental instabilities affect protocol performance, including switching between mutually unbiased measurement observables and refrigeration powered by causal order superposition, providing insights into broader implications. Using the quantum switch—a process involving a controlled operation followed by post-selection of the control—a system of interest can evolve under an effective dynamics governed by a superposition of operation orders. This work investigates how environmental influences on the control impact the desired superposition of orders in realistic scenarios.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01843-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum switch instabilities with an open control\",\"authors\":\"Otavio A. D. Molitor, André H. A. Malavazi, Roberto Dobal Baldijão, Alexandre C. Orthey Jr., Ismael L. Paiva, Pedro R. Dieguez\",\"doi\":\"10.1038/s42005-024-01843-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The superposition of causal orders shows promise in various quantum technologies. However, the fragility of quantum systems arising from environmental interactions, leading to dissipative behavior and irreversibility, demands a deeper understanding of the possible instabilities in the coherent control of causal orders. In this work, we employ a collisional model to investigate the impact of an open control system on the generation of interference between two causal orders. We present the environmental instabilities for the switch of two arbitrary quantum operations and examine the influence of environmental temperature on each potential outcome of control post-selection. Additionally, we explore how environmental instabilities affect protocol performance, including switching between mutually unbiased measurement observables and refrigeration powered by causal order superposition, providing insights into broader implications. Using the quantum switch—a process involving a controlled operation followed by post-selection of the control—a system of interest can evolve under an effective dynamics governed by a superposition of operation orders. This work investigates how environmental influences on the control impact the desired superposition of orders in realistic scenarios.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01843-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01843-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01843-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The superposition of causal orders shows promise in various quantum technologies. However, the fragility of quantum systems arising from environmental interactions, leading to dissipative behavior and irreversibility, demands a deeper understanding of the possible instabilities in the coherent control of causal orders. In this work, we employ a collisional model to investigate the impact of an open control system on the generation of interference between two causal orders. We present the environmental instabilities for the switch of two arbitrary quantum operations and examine the influence of environmental temperature on each potential outcome of control post-selection. Additionally, we explore how environmental instabilities affect protocol performance, including switching between mutually unbiased measurement observables and refrigeration powered by causal order superposition, providing insights into broader implications. Using the quantum switch—a process involving a controlled operation followed by post-selection of the control—a system of interest can evolve under an effective dynamics governed by a superposition of operation orders. This work investigates how environmental influences on the control impact the desired superposition of orders in realistic scenarios.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.