在地球尺度上实现沿岸分析

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-11-08 DOI:10.1016/j.envsoft.2024.106257
Floris Reinier Calkoen, Arjen Pieter Luijendijk, Kilian Vos, Etiënne Kras, Fedor Baart
{"title":"在地球尺度上实现沿岸分析","authors":"Floris Reinier Calkoen, Arjen Pieter Luijendijk, Kilian Vos, Etiënne Kras, Fedor Baart","doi":"10.1016/j.envsoft.2024.106257","DOIUrl":null,"url":null,"abstract":"Coastal science has entered a new era of data-driven research, facilitated by satellite data and cloud computing. Despite its potential, the coastal community has yet to fully capitalize on these advancements due to a lack of tailored data, tools, and models. This paper demonstrates how cloud technology can advance coastal analytics at scale. We introduce GCTS, a novel foundational dataset comprising over 11 million coastal transects at 100-m resolution. Our experiments highlight the importance of cloud-optimized data formats, geospatial sorting, and metadata-driven data retrieval. By leveraging cloud technology, we achieve up to 700 times faster performance for tasks like coastal waterline mapping. A case study reveals that 33% of the world’s first kilometer of coast is below 5 m, with the entire analysis completed in a few hours. Our findings make a compelling case for the coastal community to start producing data, tools, and models suitable for scalable coastal analytics.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"42 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling coastal analytics at planetary scale\",\"authors\":\"Floris Reinier Calkoen, Arjen Pieter Luijendijk, Kilian Vos, Etiënne Kras, Fedor Baart\",\"doi\":\"10.1016/j.envsoft.2024.106257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coastal science has entered a new era of data-driven research, facilitated by satellite data and cloud computing. Despite its potential, the coastal community has yet to fully capitalize on these advancements due to a lack of tailored data, tools, and models. This paper demonstrates how cloud technology can advance coastal analytics at scale. We introduce GCTS, a novel foundational dataset comprising over 11 million coastal transects at 100-m resolution. Our experiments highlight the importance of cloud-optimized data formats, geospatial sorting, and metadata-driven data retrieval. By leveraging cloud technology, we achieve up to 700 times faster performance for tasks like coastal waterline mapping. A case study reveals that 33% of the world’s first kilometer of coast is below 5 m, with the entire analysis completed in a few hours. Our findings make a compelling case for the coastal community to start producing data, tools, and models suitable for scalable coastal analytics.\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envsoft.2024.106257\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2024.106257","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在卫星数据和云计算的推动下,沿岸科学进入了一个数据驱动研究的新时代。尽管潜力巨大,但由于缺乏量身定做的数据、工具和模型,沿岸界尚未充分利用这些进步。本文展示了云技术如何大规模推进沿岸分析。我们介绍了 GCTS,这是一个新颖的基础数据集,包括 1100 多万个 100 米分辨率的沿岸横断面。我们的实验强调了云优化数据格式、地理空间分类和元数据驱动的数据检索的重要性。通过利用云技术,我们在沿海水线测绘等任务中实现了高达 700 倍的性能提升。一项案例研究显示,世界上第一公里海岸线的 33% 都在 5 米以下,而整个分析工作只需几个小时即可完成。我们的研究结果为沿岸社区提供了一个令人信服的理由,即开始生产适用于可扩展沿岸分析的数据、工具和模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling coastal analytics at planetary scale
Coastal science has entered a new era of data-driven research, facilitated by satellite data and cloud computing. Despite its potential, the coastal community has yet to fully capitalize on these advancements due to a lack of tailored data, tools, and models. This paper demonstrates how cloud technology can advance coastal analytics at scale. We introduce GCTS, a novel foundational dataset comprising over 11 million coastal transects at 100-m resolution. Our experiments highlight the importance of cloud-optimized data formats, geospatial sorting, and metadata-driven data retrieval. By leveraging cloud technology, we achieve up to 700 times faster performance for tasks like coastal waterline mapping. A case study reveals that 33% of the world’s first kilometer of coast is below 5 m, with the entire analysis completed in a few hours. Our findings make a compelling case for the coastal community to start producing data, tools, and models suitable for scalable coastal analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Probability analysis of shallow landslides in varying vegetation zones with random soil grain-size distribution Variable sensitivity analysis in groundwater level projections under climate change adopting a hybrid machine learning algorithm Taxonomy of purposes, methods, and recommendations for vulnerability analysis Canopy height Mapper: A google earth engine application for predicting global canopy heights combining GEDI with multi-source data Integrated STL-DBSCAN algorithm for online hydrological and water quality monitoring data cleaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1