参数曲面间连续碰撞检测的时变包含法

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-11-19 DOI:10.1145/3687960
Xuwen Chen, Cheng Yu, Xingyu Ni, Mengyu Chu, Bin Wang, Baoquan Chen
{"title":"参数曲面间连续碰撞检测的时变包含法","authors":"Xuwen Chen, Cheng Yu, Xingyu Ni, Mengyu Chu, Bin Wang, Baoquan Chen","doi":"10.1145/3687960","DOIUrl":null,"url":null,"abstract":"Continuous collision detection (CCD) between parametric surfaces is typically formulated as a five-dimensional constrained optimization problem. In the field of CAD and computer graphics, common approaches to solving this problem rely on linearization or sampling strategies. Alternatively, inclusion-based techniques detect collisions by employing 5D inclusion functions, which are typically designed to represent the swept volumes of parametric surfaces over a given time span, and narrowing down the earliest collision moment through subdivision in both spatial and temporal dimensions. However, when high detection accuracy is required, all these approaches significantly increases computational consumption due to the high-dimensional searching space. In this work, we develop a new time-dependent inclusion-based CCD framework that eliminates the need for temporal subdivision and can speedup conventional methods by a factor ranging from 36 to 138. To achieve this, we propose a novel time-dependent inclusion function that provides a continuous representation of a moving surface, along with a corresponding intersection detection algorithm that quickly identifies the time intervals when collisions are likely to occur. We validate our method across various primitive types, demonstrate its efficacy within the simulation pipeline and show that it significantly improves CCD efficiency while maintaining accuracy.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"6 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Time-Dependent Inclusion-Based Method for Continuous Collision Detection between Parametric Surfaces\",\"authors\":\"Xuwen Chen, Cheng Yu, Xingyu Ni, Mengyu Chu, Bin Wang, Baoquan Chen\",\"doi\":\"10.1145/3687960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous collision detection (CCD) between parametric surfaces is typically formulated as a five-dimensional constrained optimization problem. In the field of CAD and computer graphics, common approaches to solving this problem rely on linearization or sampling strategies. Alternatively, inclusion-based techniques detect collisions by employing 5D inclusion functions, which are typically designed to represent the swept volumes of parametric surfaces over a given time span, and narrowing down the earliest collision moment through subdivision in both spatial and temporal dimensions. However, when high detection accuracy is required, all these approaches significantly increases computational consumption due to the high-dimensional searching space. In this work, we develop a new time-dependent inclusion-based CCD framework that eliminates the need for temporal subdivision and can speedup conventional methods by a factor ranging from 36 to 138. To achieve this, we propose a novel time-dependent inclusion function that provides a continuous representation of a moving surface, along with a corresponding intersection detection algorithm that quickly identifies the time intervals when collisions are likely to occur. We validate our method across various primitive types, demonstrate its efficacy within the simulation pipeline and show that it significantly improves CCD efficiency while maintaining accuracy.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3687960\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687960","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

参数曲面之间的连续碰撞检测(CCD)通常被表述为一个五维约束优化问题。在 CAD 和计算机图形学领域,解决这一问题的常见方法依赖于线性化或采样策略。另外,基于包含的技术通过采用五维包含函数来检测碰撞,这些函数通常用于表示参数曲面在给定时间跨度内的扫过体积,并通过空间和时间维度的细分来缩小最早碰撞时刻的范围。然而,当需要高检测精度时,所有这些方法都会因高维搜索空间而大大增加计算消耗。在这项工作中,我们开发了一种新的基于时间依赖性包含的 CCD 框架,无需进行时间细分,可将传统方法的速度提高 36 到 138 倍。为实现这一目标,我们提出了一种新颖的随时间变化的包含函数,该函数提供了运动表面的连续表示,同时还提出了相应的交叉点检测算法,该算法可快速识别可能发生碰撞的时间间隔。我们在各种基元类型中验证了我们的方法,证明了它在模拟管道中的功效,并表明它在保持精度的同时显著提高了 CCD 效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Time-Dependent Inclusion-Based Method for Continuous Collision Detection between Parametric Surfaces
Continuous collision detection (CCD) between parametric surfaces is typically formulated as a five-dimensional constrained optimization problem. In the field of CAD and computer graphics, common approaches to solving this problem rely on linearization or sampling strategies. Alternatively, inclusion-based techniques detect collisions by employing 5D inclusion functions, which are typically designed to represent the swept volumes of parametric surfaces over a given time span, and narrowing down the earliest collision moment through subdivision in both spatial and temporal dimensions. However, when high detection accuracy is required, all these approaches significantly increases computational consumption due to the high-dimensional searching space. In this work, we develop a new time-dependent inclusion-based CCD framework that eliminates the need for temporal subdivision and can speedup conventional methods by a factor ranging from 36 to 138. To achieve this, we propose a novel time-dependent inclusion function that provides a continuous representation of a moving surface, along with a corresponding intersection detection algorithm that quickly identifies the time intervals when collisions are likely to occur. We validate our method across various primitive types, demonstrate its efficacy within the simulation pipeline and show that it significantly improves CCD efficiency while maintaining accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
Direct Manipulation of Procedural Implicit Surfaces 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting Quark: Real-time, High-resolution, and General Neural View Synthesis Differentiable Owen Scrambling ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1