采用神经形态检测技术的水氨传感器

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-11-19 DOI:10.1002/aelm.202400509
Kateryna Vyshniakova, Mohammad Javad Mirshojaeian Hosseini, Huiwen Bai, Masoome Fatahi, Victor Marco Rocha Malacco, Shawn S Donkin, Richard M Voyles, Robert A. Nawrocki
{"title":"采用神经形态检测技术的水氨传感器","authors":"Kateryna Vyshniakova, Mohammad Javad Mirshojaeian Hosseini, Huiwen Bai, Masoome Fatahi, Victor Marco Rocha Malacco, Shawn S Donkin, Richard M Voyles, Robert A. Nawrocki","doi":"10.1002/aelm.202400509","DOIUrl":null,"url":null,"abstract":"A hybrid inorganic–organic neuromorphic sensor utilizing a thin film zinc oxide (ZnO) detector with organic neuromorphic pre-processing is developed to quantify ammonia in aqueous environments, including biological analytes. Impedimetric ZnO sensor, connected to an organic somatic circuit, reliably and accurately detects changes in electrical impedance to measure and quantify variations in the concentration of ammonia. The sensing mechanism of the ZnO thin film sensor is hypothesized to be the cause of the decrease in resistance of a solution with an increase in ammonia concentration. It is found that the surface oxide of the ZnO layer reacts with even very low concentrations of ammonia (<span data-altimg=\"/cms/asset/a36b91bf-f859-44b5-a5d9-080394253626/aelm1030-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aelm1030-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"upper N upper H 3\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.057em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:2199160X:media:aelm1030:aelm1030-math-0001\" display=\"inline\" location=\"graphic/aelm1030-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper N upper H 3\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">N</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">H</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn></msub></mrow>$N{H}_{3}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), leading to changes in resistivity. This makes the sensor capable of detecting ammonia in a range of concentrations between 0.0001 and 0.1 <i>M</i>. A neuromorphic circuit converts the analog change of ammonia concentration expressed as a change of sensor impedance to the digitized frequency of spikes. Detecting such a low ammonia concentration is critical for environmental monitoring and medical diagnosis. The digitized nature of neuromorphic signal pre-processing makes it more resilient for signal transmission in the presence of noise and serves as a demonstration of “smart sensing.”","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"250 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous Ammonia Sensor with Neuromorphic Detection\",\"authors\":\"Kateryna Vyshniakova, Mohammad Javad Mirshojaeian Hosseini, Huiwen Bai, Masoome Fatahi, Victor Marco Rocha Malacco, Shawn S Donkin, Richard M Voyles, Robert A. Nawrocki\",\"doi\":\"10.1002/aelm.202400509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid inorganic–organic neuromorphic sensor utilizing a thin film zinc oxide (ZnO) detector with organic neuromorphic pre-processing is developed to quantify ammonia in aqueous environments, including biological analytes. Impedimetric ZnO sensor, connected to an organic somatic circuit, reliably and accurately detects changes in electrical impedance to measure and quantify variations in the concentration of ammonia. The sensing mechanism of the ZnO thin film sensor is hypothesized to be the cause of the decrease in resistance of a solution with an increase in ammonia concentration. It is found that the surface oxide of the ZnO layer reacts with even very low concentrations of ammonia (<span data-altimg=\\\"/cms/asset/a36b91bf-f859-44b5-a5d9-080394253626/aelm1030-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"6\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/aelm1030-math-0001.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,3\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper N upper H 3\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"1,2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.057em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:2199160X:media:aelm1030:aelm1030-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/aelm1030-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,3\\\" data-semantic-content=\\\"4\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper N upper H 3\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">N</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"1,2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">H</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">3</mn></msub></mrow>$N{H}_{3}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), leading to changes in resistivity. This makes the sensor capable of detecting ammonia in a range of concentrations between 0.0001 and 0.1 <i>M</i>. A neuromorphic circuit converts the analog change of ammonia concentration expressed as a change of sensor impedance to the digitized frequency of spikes. Detecting such a low ammonia concentration is critical for environmental monitoring and medical diagnosis. The digitized nature of neuromorphic signal pre-processing makes it more resilient for signal transmission in the presence of noise and serves as a demonstration of “smart sensing.”\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"250 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400509\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400509","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用氧化锌(ZnO)薄膜探测器和有机神经形态预处理技术开发了一种无机-有机混合神经形态传感器,用于量化水环境中的氨,包括生物分析物。与有机体感电路相连的阻抗型氧化锌传感器能够可靠、准确地检测电阻抗的变化,从而测量和量化氨浓度的变化。假设氧化锌薄膜传感器的传感机制是溶液电阻随氨浓度增加而降低的原因。研究发现,即使是浓度很低的氨气(NH3$N{H}_{3}$),氧化锌层的表面氧化物也会发生反应,导致电阻率发生变化。神经形态电路将以传感器阻抗变化表示的氨浓度模拟变化转换为数字化的尖峰频率。检测如此低的氨浓度对于环境监测和医疗诊断至关重要。神经形态信号预处理的数字化特性使其在噪声环境下的信号传输更具弹性,是 "智能传感 "的一种体现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aqueous Ammonia Sensor with Neuromorphic Detection
A hybrid inorganic–organic neuromorphic sensor utilizing a thin film zinc oxide (ZnO) detector with organic neuromorphic pre-processing is developed to quantify ammonia in aqueous environments, including biological analytes. Impedimetric ZnO sensor, connected to an organic somatic circuit, reliably and accurately detects changes in electrical impedance to measure and quantify variations in the concentration of ammonia. The sensing mechanism of the ZnO thin film sensor is hypothesized to be the cause of the decrease in resistance of a solution with an increase in ammonia concentration. It is found that the surface oxide of the ZnO layer reacts with even very low concentrations of ammonia (NH3$N{H}_{3}$), leading to changes in resistivity. This makes the sensor capable of detecting ammonia in a range of concentrations between 0.0001 and 0.1 M. A neuromorphic circuit converts the analog change of ammonia concentration expressed as a change of sensor impedance to the digitized frequency of spikes. Detecting such a low ammonia concentration is critical for environmental monitoring and medical diagnosis. The digitized nature of neuromorphic signal pre-processing makes it more resilient for signal transmission in the presence of noise and serves as a demonstration of “smart sensing.”
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Physical Reservoir Computing Utilizing Ion-Gating Transistors Operating in Electric Double Layer and Redox Mechanisms Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor 2D α-In2Se3 Flakes for High Frequency Tunable and Switchable Film Bulk Acoustic Wave Resonators Aqueous Ammonia Sensor with Neuromorphic Detection 3D Nano Hafnium-Based Ferroelectric Memory Vertical Array for High-Density and High-Reliability Logic-In-Memory Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1