Kateryna Vyshniakova, Mohammad Javad Mirshojaeian Hosseini, Huiwen Bai, Masoome Fatahi, Victor Marco Rocha Malacco, Shawn S Donkin, Richard M Voyles, Robert A. Nawrocki
{"title":"采用神经形态检测技术的水氨传感器","authors":"Kateryna Vyshniakova, Mohammad Javad Mirshojaeian Hosseini, Huiwen Bai, Masoome Fatahi, Victor Marco Rocha Malacco, Shawn S Donkin, Richard M Voyles, Robert A. Nawrocki","doi":"10.1002/aelm.202400509","DOIUrl":null,"url":null,"abstract":"A hybrid inorganic–organic neuromorphic sensor utilizing a thin film zinc oxide (ZnO) detector with organic neuromorphic pre-processing is developed to quantify ammonia in aqueous environments, including biological analytes. Impedimetric ZnO sensor, connected to an organic somatic circuit, reliably and accurately detects changes in electrical impedance to measure and quantify variations in the concentration of ammonia. The sensing mechanism of the ZnO thin film sensor is hypothesized to be the cause of the decrease in resistance of a solution with an increase in ammonia concentration. It is found that the surface oxide of the ZnO layer reacts with even very low concentrations of ammonia (<span data-altimg=\"/cms/asset/a36b91bf-f859-44b5-a5d9-080394253626/aelm1030-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aelm1030-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"upper N upper H 3\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.057em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:2199160X:media:aelm1030:aelm1030-math-0001\" display=\"inline\" location=\"graphic/aelm1030-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper N upper H 3\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">N</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">H</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn></msub></mrow>$N{H}_{3}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), leading to changes in resistivity. This makes the sensor capable of detecting ammonia in a range of concentrations between 0.0001 and 0.1 <i>M</i>. A neuromorphic circuit converts the analog change of ammonia concentration expressed as a change of sensor impedance to the digitized frequency of spikes. Detecting such a low ammonia concentration is critical for environmental monitoring and medical diagnosis. The digitized nature of neuromorphic signal pre-processing makes it more resilient for signal transmission in the presence of noise and serves as a demonstration of “smart sensing.”","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"250 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous Ammonia Sensor with Neuromorphic Detection\",\"authors\":\"Kateryna Vyshniakova, Mohammad Javad Mirshojaeian Hosseini, Huiwen Bai, Masoome Fatahi, Victor Marco Rocha Malacco, Shawn S Donkin, Richard M Voyles, Robert A. Nawrocki\",\"doi\":\"10.1002/aelm.202400509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid inorganic–organic neuromorphic sensor utilizing a thin film zinc oxide (ZnO) detector with organic neuromorphic pre-processing is developed to quantify ammonia in aqueous environments, including biological analytes. Impedimetric ZnO sensor, connected to an organic somatic circuit, reliably and accurately detects changes in electrical impedance to measure and quantify variations in the concentration of ammonia. The sensing mechanism of the ZnO thin film sensor is hypothesized to be the cause of the decrease in resistance of a solution with an increase in ammonia concentration. It is found that the surface oxide of the ZnO layer reacts with even very low concentrations of ammonia (<span data-altimg=\\\"/cms/asset/a36b91bf-f859-44b5-a5d9-080394253626/aelm1030-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"6\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/aelm1030-math-0001.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,3\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper N upper H 3\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"1,2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.057em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:2199160X:media:aelm1030:aelm1030-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/aelm1030-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,3\\\" data-semantic-content=\\\"4\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper N upper H 3\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">N</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"></mo><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"1,2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">H</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">3</mn></msub></mrow>$N{H}_{3}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), leading to changes in resistivity. This makes the sensor capable of detecting ammonia in a range of concentrations between 0.0001 and 0.1 <i>M</i>. A neuromorphic circuit converts the analog change of ammonia concentration expressed as a change of sensor impedance to the digitized frequency of spikes. Detecting such a low ammonia concentration is critical for environmental monitoring and medical diagnosis. The digitized nature of neuromorphic signal pre-processing makes it more resilient for signal transmission in the presence of noise and serves as a demonstration of “smart sensing.”\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"250 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400509\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400509","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Aqueous Ammonia Sensor with Neuromorphic Detection
A hybrid inorganic–organic neuromorphic sensor utilizing a thin film zinc oxide (ZnO) detector with organic neuromorphic pre-processing is developed to quantify ammonia in aqueous environments, including biological analytes. Impedimetric ZnO sensor, connected to an organic somatic circuit, reliably and accurately detects changes in electrical impedance to measure and quantify variations in the concentration of ammonia. The sensing mechanism of the ZnO thin film sensor is hypothesized to be the cause of the decrease in resistance of a solution with an increase in ammonia concentration. It is found that the surface oxide of the ZnO layer reacts with even very low concentrations of ammonia (), leading to changes in resistivity. This makes the sensor capable of detecting ammonia in a range of concentrations between 0.0001 and 0.1 M. A neuromorphic circuit converts the analog change of ammonia concentration expressed as a change of sensor impedance to the digitized frequency of spikes. Detecting such a low ammonia concentration is critical for environmental monitoring and medical diagnosis. The digitized nature of neuromorphic signal pre-processing makes it more resilient for signal transmission in the presence of noise and serves as a demonstration of “smart sensing.”
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.