异质高价铁(IV)-氧的配位工程,通过类似芬顿的强力反应安全去除污染物

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-19 DOI:10.1038/s41467-024-54225-x
Yuanfang Lin, Ying Wang, Zongling Weng, Yang Zhou, Siqi Liu, Xinwen Ou, Xing Xu, Yanpeng Cai, Jin Jiang, Bin Han, Zhifeng Yang
{"title":"异质高价铁(IV)-氧的配位工程,通过类似芬顿的强力反应安全去除污染物","authors":"Yuanfang Lin, Ying Wang, Zongling Weng, Yang Zhou, Siqi Liu, Xinwen Ou, Xing Xu, Yanpeng Cai, Jin Jiang, Bin Han, Zhifeng Yang","doi":"10.1038/s41467-024-54225-x","DOIUrl":null,"url":null,"abstract":"<p>Coordination engineering of high-valent Fe(IV)-oxo (Fe<sup>IV</sup>=O) is expected to break the activity-selectivity trade-off of traditional reactive oxygen species, while attempts to regulate the oxidation behaviors of heterogeneous Fe<sup>IV</sup>=O remain unexplored. Here, by coordination engineering of Fe-N<sub>x</sub> single-atom catalysts (Fe-N<sub>x</sub> SACs), we propose a feasible approach to regulate the oxidation behaviors of heterogeneous Fe<sup>IV</sup>=O. The developed Fe-N<sub>2</sub> SACs/peroxymonosulfate (PMS) system delivers boosted performance for Fe<sup>IV</sup>=O generation, and thereby can selectively remove a range of pollutants within tens of seconds. In-situ spectra and theoretical simulations suggest that low-coordination Fe-N<sub>x</sub> SACs favor the generation of Fe<sup>IV</sup>=O via PMS activation as providing more electrons to facilitate the desorption of the key <sup>*</sup>SO<sub>4</sub>H intermediate. Due to their disparate attacking sites to sulfamethoxazole (SMX) molecules, Fe-N<sub>2</sub> SACs mediated Fe<sup>IV</sup>=O (Fe<sup>IV</sup>N<sub>2</sub>=O) oxidize SMX to small molecules with less toxicity, while Fe<sup>IV</sup>N<sub>4</sub>=O produces series of more toxic azo compounds through N-N coupling with more complex oxidation pathways.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"112 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions\",\"authors\":\"Yuanfang Lin, Ying Wang, Zongling Weng, Yang Zhou, Siqi Liu, Xinwen Ou, Xing Xu, Yanpeng Cai, Jin Jiang, Bin Han, Zhifeng Yang\",\"doi\":\"10.1038/s41467-024-54225-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coordination engineering of high-valent Fe(IV)-oxo (Fe<sup>IV</sup>=O) is expected to break the activity-selectivity trade-off of traditional reactive oxygen species, while attempts to regulate the oxidation behaviors of heterogeneous Fe<sup>IV</sup>=O remain unexplored. Here, by coordination engineering of Fe-N<sub>x</sub> single-atom catalysts (Fe-N<sub>x</sub> SACs), we propose a feasible approach to regulate the oxidation behaviors of heterogeneous Fe<sup>IV</sup>=O. The developed Fe-N<sub>2</sub> SACs/peroxymonosulfate (PMS) system delivers boosted performance for Fe<sup>IV</sup>=O generation, and thereby can selectively remove a range of pollutants within tens of seconds. In-situ spectra and theoretical simulations suggest that low-coordination Fe-N<sub>x</sub> SACs favor the generation of Fe<sup>IV</sup>=O via PMS activation as providing more electrons to facilitate the desorption of the key <sup>*</sup>SO<sub>4</sub>H intermediate. Due to their disparate attacking sites to sulfamethoxazole (SMX) molecules, Fe-N<sub>2</sub> SACs mediated Fe<sup>IV</sup>=O (Fe<sup>IV</sup>N<sub>2</sub>=O) oxidize SMX to small molecules with less toxicity, while Fe<sup>IV</sup>N<sub>4</sub>=O produces series of more toxic azo compounds through N-N coupling with more complex oxidation pathways.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54225-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54225-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高价铁(IV)-氧化物(FeIV=O)的配位工程有望打破传统活性氧的活性-选择性权衡,而调节异质 FeIV=O 氧化行为的尝试仍有待探索。在此,我们通过对 Fe-Nx 单原子催化剂(Fe-Nx SACs)进行配位工程,提出了一种调节异相 FeIV=O 氧化行为的可行方法。所开发的 Fe-N2 SACs/peroxymonosulfate (PMS) 系统提高了生成 FeIV=O 的性能,从而能在数十秒内选择性地去除一系列污染物。原位光谱和理论模拟表明,低配位的 Fe-Nx SAC 有利于通过 PMS 激活生成 FeIV=O,因为它提供了更多的电子来促进关键 *SO4H 中间体的解吸。由于它们对磺胺甲噁唑(SMX)分子的攻击位点不同,Fe-N2 SACs 介导的 FeIV=O (FeIVN2=O)可将 SMX 氧化成毒性较低的小分子,而 FeIVN4=O 则通过 N-N 偶联产生一系列毒性较高的偶氮化合物,氧化途径更为复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions

Coordination engineering of high-valent Fe(IV)-oxo (FeIV=O) is expected to break the activity-selectivity trade-off of traditional reactive oxygen species, while attempts to regulate the oxidation behaviors of heterogeneous FeIV=O remain unexplored. Here, by coordination engineering of Fe-Nx single-atom catalysts (Fe-Nx SACs), we propose a feasible approach to regulate the oxidation behaviors of heterogeneous FeIV=O. The developed Fe-N2 SACs/peroxymonosulfate (PMS) system delivers boosted performance for FeIV=O generation, and thereby can selectively remove a range of pollutants within tens of seconds. In-situ spectra and theoretical simulations suggest that low-coordination Fe-Nx SACs favor the generation of FeIV=O via PMS activation as providing more electrons to facilitate the desorption of the key *SO4H intermediate. Due to their disparate attacking sites to sulfamethoxazole (SMX) molecules, Fe-N2 SACs mediated FeIV=O (FeIVN2=O) oxidize SMX to small molecules with less toxicity, while FeIVN4=O produces series of more toxic azo compounds through N-N coupling with more complex oxidation pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Ants integrate proprioception as well as visual context and efference copies to make robust predictions Probabilistic photonic computing with chaotic light Dynamic anti-correlations of water hydrogen bonds Holistic numerical simulation of a quenching process on a real-size multifilamentary superconducting coil Selective light-driven methane oxidation to ethanol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1