{"title":"PWAS Hub:探索复杂疾病与性依赖的基因关联","authors":"Roei Zucker, Guy Kelman, Michal Linial","doi":"10.1093/nar/gkae1125","DOIUrl":null,"url":null,"abstract":"The Proteome-Wide Association Study (PWAS) is a protein-based genetic association approach designed to complement traditional variant-based methods like GWAS. PWAS operates in two stages: first, machine learning models predict the impact of genetic variants on protein-coding genes, generating effect scores. These scores are then aggregated into a gene-damaging score for each individual. This score is then used in case-control statistical tests to significantly link to specific phenotypes. PWAS Hub (v1.2) is a user-friendly platform that facilitates the exploration of gene-disease associations using clinical and genetic data from the UK Biobank (UKB), encompassing 500k individuals. PWAS Hub reports on 819 diseases and phenotypes determined by PheCode and ICD-10 clinical codes, each with a minimum of 400 affected individuals. PWAS-derived gene associations were reported for 72% of the tested phenotypes. The PWAS Hub also analyzes gene associations separately for males and females, considering sex-specific genetic effects, inheritance patterns (dominant and recessive), and gene pleiotropy. We illustrated the utility of the PWAS Hub for primary (essential) hypertension (I10), type 2 diabetes mellitus (E11), and specified haematuria (R31) that showed sex-dependent genetic signals. The PWAS Hub, available at pwas.huji.ac.il, is a valuable resource for studying genetic contributions to common diseases and sex-specific effects.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"27 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PWAS Hub: exploring gene-based associations of complex diseases with sex dependency\",\"authors\":\"Roei Zucker, Guy Kelman, Michal Linial\",\"doi\":\"10.1093/nar/gkae1125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Proteome-Wide Association Study (PWAS) is a protein-based genetic association approach designed to complement traditional variant-based methods like GWAS. PWAS operates in two stages: first, machine learning models predict the impact of genetic variants on protein-coding genes, generating effect scores. These scores are then aggregated into a gene-damaging score for each individual. This score is then used in case-control statistical tests to significantly link to specific phenotypes. PWAS Hub (v1.2) is a user-friendly platform that facilitates the exploration of gene-disease associations using clinical and genetic data from the UK Biobank (UKB), encompassing 500k individuals. PWAS Hub reports on 819 diseases and phenotypes determined by PheCode and ICD-10 clinical codes, each with a minimum of 400 affected individuals. PWAS-derived gene associations were reported for 72% of the tested phenotypes. The PWAS Hub also analyzes gene associations separately for males and females, considering sex-specific genetic effects, inheritance patterns (dominant and recessive), and gene pleiotropy. We illustrated the utility of the PWAS Hub for primary (essential) hypertension (I10), type 2 diabetes mellitus (E11), and specified haematuria (R31) that showed sex-dependent genetic signals. The PWAS Hub, available at pwas.huji.ac.il, is a valuable resource for studying genetic contributions to common diseases and sex-specific effects.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1125\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1125","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PWAS Hub: exploring gene-based associations of complex diseases with sex dependency
The Proteome-Wide Association Study (PWAS) is a protein-based genetic association approach designed to complement traditional variant-based methods like GWAS. PWAS operates in two stages: first, machine learning models predict the impact of genetic variants on protein-coding genes, generating effect scores. These scores are then aggregated into a gene-damaging score for each individual. This score is then used in case-control statistical tests to significantly link to specific phenotypes. PWAS Hub (v1.2) is a user-friendly platform that facilitates the exploration of gene-disease associations using clinical and genetic data from the UK Biobank (UKB), encompassing 500k individuals. PWAS Hub reports on 819 diseases and phenotypes determined by PheCode and ICD-10 clinical codes, each with a minimum of 400 affected individuals. PWAS-derived gene associations were reported for 72% of the tested phenotypes. The PWAS Hub also analyzes gene associations separately for males and females, considering sex-specific genetic effects, inheritance patterns (dominant and recessive), and gene pleiotropy. We illustrated the utility of the PWAS Hub for primary (essential) hypertension (I10), type 2 diabetes mellitus (E11), and specified haematuria (R31) that showed sex-dependent genetic signals. The PWAS Hub, available at pwas.huji.ac.il, is a valuable resource for studying genetic contributions to common diseases and sex-specific effects.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.