Guojin Huang, Qing Fang, Zheng Zhang, Ligang Liu, Xiao-Ming Fu
{"title":"点云的随机正态定向","authors":"Guojin Huang, Qing Fang, Zheng Zhang, Ligang Liu, Xiao-Ming Fu","doi":"10.1145/3687944","DOIUrl":null,"url":null,"abstract":"We propose a simple yet effective method to orient normals for point clouds. Central to our approach is a novel optimization objective function defined from global and local perspectives. Globally, we introduce a signed uncertainty function that distinguishes the inside and outside of the underlying surface. Moreover, benefiting from the statistics of our global term, we present a local orientation term instead of a global one. The optimization problem can be solved by the commonly used numerical optimization solver, such as L-BFGS. The capability and feasibility of our approach are demonstrated over various complex point clouds. We achieve higher practical robustness and normal quality than the state-of-the-art methods.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"70 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Normal Orientation for Point Clouds\",\"authors\":\"Guojin Huang, Qing Fang, Zheng Zhang, Ligang Liu, Xiao-Ming Fu\",\"doi\":\"10.1145/3687944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a simple yet effective method to orient normals for point clouds. Central to our approach is a novel optimization objective function defined from global and local perspectives. Globally, we introduce a signed uncertainty function that distinguishes the inside and outside of the underlying surface. Moreover, benefiting from the statistics of our global term, we present a local orientation term instead of a global one. The optimization problem can be solved by the commonly used numerical optimization solver, such as L-BFGS. The capability and feasibility of our approach are demonstrated over various complex point clouds. We achieve higher practical robustness and normal quality than the state-of-the-art methods.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3687944\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687944","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We propose a simple yet effective method to orient normals for point clouds. Central to our approach is a novel optimization objective function defined from global and local perspectives. Globally, we introduce a signed uncertainty function that distinguishes the inside and outside of the underlying surface. Moreover, benefiting from the statistics of our global term, we present a local orientation term instead of a global one. The optimization problem can be solved by the commonly used numerical optimization solver, such as L-BFGS. The capability and feasibility of our approach are demonstrated over various complex point clouds. We achieve higher practical robustness and normal quality than the state-of-the-art methods.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.