点云的随机正态定向

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-11-19 DOI:10.1145/3687944
Guojin Huang, Qing Fang, Zheng Zhang, Ligang Liu, Xiao-Ming Fu
{"title":"点云的随机正态定向","authors":"Guojin Huang, Qing Fang, Zheng Zhang, Ligang Liu, Xiao-Ming Fu","doi":"10.1145/3687944","DOIUrl":null,"url":null,"abstract":"We propose a simple yet effective method to orient normals for point clouds. Central to our approach is a novel optimization objective function defined from global and local perspectives. Globally, we introduce a signed uncertainty function that distinguishes the inside and outside of the underlying surface. Moreover, benefiting from the statistics of our global term, we present a local orientation term instead of a global one. The optimization problem can be solved by the commonly used numerical optimization solver, such as L-BFGS. The capability and feasibility of our approach are demonstrated over various complex point clouds. We achieve higher practical robustness and normal quality than the state-of-the-art methods.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"70 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Normal Orientation for Point Clouds\",\"authors\":\"Guojin Huang, Qing Fang, Zheng Zhang, Ligang Liu, Xiao-Ming Fu\",\"doi\":\"10.1145/3687944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a simple yet effective method to orient normals for point clouds. Central to our approach is a novel optimization objective function defined from global and local perspectives. Globally, we introduce a signed uncertainty function that distinguishes the inside and outside of the underlying surface. Moreover, benefiting from the statistics of our global term, we present a local orientation term instead of a global one. The optimization problem can be solved by the commonly used numerical optimization solver, such as L-BFGS. The capability and feasibility of our approach are demonstrated over various complex point clouds. We achieve higher practical robustness and normal quality than the state-of-the-art methods.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3687944\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687944","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种简单而有效的点云法线定向方法。我们方法的核心是一个从全局和局部角度定义的新型优化目标函数。在全局上,我们引入了一个有符号的不确定性函数,用于区分底层表面的内部和外部。此外,受益于全局项的统计数据,我们提出了一个局部定向项,而不是全局项。优化问题可以通过常用的数值优化求解器(如 L-BFGS)来解决。我们的方法在各种复杂点云上的能力和可行性得到了验证。与最先进的方法相比,我们获得了更高的实际鲁棒性和正常质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Normal Orientation for Point Clouds
We propose a simple yet effective method to orient normals for point clouds. Central to our approach is a novel optimization objective function defined from global and local perspectives. Globally, we introduce a signed uncertainty function that distinguishes the inside and outside of the underlying surface. Moreover, benefiting from the statistics of our global term, we present a local orientation term instead of a global one. The optimization problem can be solved by the commonly used numerical optimization solver, such as L-BFGS. The capability and feasibility of our approach are demonstrated over various complex point clouds. We achieve higher practical robustness and normal quality than the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
Direct Manipulation of Procedural Implicit Surfaces 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting Quark: Real-time, High-resolution, and General Neural View Synthesis Differentiable Owen Scrambling ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1