引力波的适当时间路径积分:改进的波光学框架

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2024-11-20 DOI:10.1088/1475-7516/2024/11/031
Ginevra Braga, Alice Garoffolo, Angelo Ricciardone, Nicola Bartolo and Sabino Matarrese
{"title":"引力波的适当时间路径积分:改进的波光学框架","authors":"Ginevra Braga, Alice Garoffolo, Angelo Ricciardone, Nicola Bartolo and Sabino Matarrese","doi":"10.1088/1475-7516/2024/11/031","DOIUrl":null,"url":null,"abstract":"When gravitational waves travel from their source to an observer, they interact with matter structures along their path, causing distinct deformations in their waveforms. In this study we introduce a novel theoretical framework for wave optics effects in gravitational lensing, addressing the limitations of existing approaches. We achieve this by incorporating the proper time technique, typically used in field theory studies, into gravitational lensing. This approach allows us to extend the standard formalism beyond the eikonal and paraxial approximations, which are traditionally assumed, and to account for polarization effects, which are typically neglected in the literature. We demonstrate that our method provides a robust generalization of conventional approaches, including them as special cases. Our findings enhance our understanding of gravitational wave propagation, which is crucial for accurately interpreting gravitational wave observations and extracting unbiased information about the lenses from the gravitational wave waveforms.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"178 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proper time path integrals for gravitational waves: an improved wave optics framework\",\"authors\":\"Ginevra Braga, Alice Garoffolo, Angelo Ricciardone, Nicola Bartolo and Sabino Matarrese\",\"doi\":\"10.1088/1475-7516/2024/11/031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When gravitational waves travel from their source to an observer, they interact with matter structures along their path, causing distinct deformations in their waveforms. In this study we introduce a novel theoretical framework for wave optics effects in gravitational lensing, addressing the limitations of existing approaches. We achieve this by incorporating the proper time technique, typically used in field theory studies, into gravitational lensing. This approach allows us to extend the standard formalism beyond the eikonal and paraxial approximations, which are traditionally assumed, and to account for polarization effects, which are typically neglected in the literature. We demonstrate that our method provides a robust generalization of conventional approaches, including them as special cases. Our findings enhance our understanding of gravitational wave propagation, which is crucial for accurately interpreting gravitational wave observations and extracting unbiased information about the lenses from the gravitational wave waveforms.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/11/031\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/031","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

当引力波从其源头传播到观测者时,会与沿途的物质结构相互作用,导致其波形发生明显的变形。在这项研究中,我们针对引力透镜中的波光学效应引入了一个新的理论框架,以解决现有方法的局限性。我们通过将通常用于场论研究的适当时间技术融入引力透镜来实现这一目标。这种方法使我们能够将标准形式主义扩展到传统假设的正交和旁轴近似之外,并考虑到文献中通常忽略的极化效应。我们证明,我们的方法提供了对传统方法的稳健概括,包括将它们作为特例。我们的发现增强了我们对引力波传播的理解,这对于准确解释引力波观测结果和从引力波波形中提取有关透镜的无偏信息至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proper time path integrals for gravitational waves: an improved wave optics framework
When gravitational waves travel from their source to an observer, they interact with matter structures along their path, causing distinct deformations in their waveforms. In this study we introduce a novel theoretical framework for wave optics effects in gravitational lensing, addressing the limitations of existing approaches. We achieve this by incorporating the proper time technique, typically used in field theory studies, into gravitational lensing. This approach allows us to extend the standard formalism beyond the eikonal and paraxial approximations, which are traditionally assumed, and to account for polarization effects, which are typically neglected in the literature. We demonstrate that our method provides a robust generalization of conventional approaches, including them as special cases. Our findings enhance our understanding of gravitational wave propagation, which is crucial for accurately interpreting gravitational wave observations and extracting unbiased information about the lenses from the gravitational wave waveforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Teleparallel geometry with spherical symmetry: the diagonal and proper frames On marginals and profiled posteriors for cosmological parameter estimation Efficient hybrid technique for generating sub-grid haloes in reionization simulations Constructing viable interacting dark matter and dark energy models: a dynamical systems approach A speed limit on tachyon fields from cosmological and fine-structure data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1