再生和修复 LiNi0.5Co0.2Mn0.3O2 单晶表面改性研究

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-11-20 DOI:10.1016/j.jallcom.2024.177689
Jiaxing Han, Weijian Zhang, Yuhui Zhao, Zongbing Chen, Wei Zhang, Yingqing Bao, Xiaozhen Wu, Aigang Zhen, Na Li, Binglong Zhu, Yan Zhuang
{"title":"再生和修复 LiNi0.5Co0.2Mn0.3O2 单晶表面改性研究","authors":"Jiaxing Han, Weijian Zhang, Yuhui Zhao, Zongbing Chen, Wei Zhang, Yingqing Bao, Xiaozhen Wu, Aigang Zhen, Na Li, Binglong Zhu, Yan Zhuang","doi":"10.1016/j.jallcom.2024.177689","DOIUrl":null,"url":null,"abstract":"Due to the relatively small particle size of single crystals, the high specific surface area increases the side reactions between the electrode and the electrolyte. Without proper surface modification, single-crystal particles tend to interact directly with the electrolyte, leading to side reactions that impair the electrochemical performance of the material. To address this issue, constructing a coating layer on the material's surface is one effective solution. In this study, a wet-coating technique was employed to co-coat single-crystal LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> cathode material with vanadium (V) and samarium (Sm). SEM and TEM tests revealed the presence of a V-Sm coating layer with a thickness of approximately 1-3<!-- --> <!-- -->nm on the surface of the coated samples. The coated material demonstrated a capacity retention rate of 86.5% after 450 cycles at a 1<!-- --> <!-- -->C rate (1<!-- --> <!-- -->C=160 mAh·g<sup>-1</sup>), which represents an improvement of about 6.7% compared to the original material. EIS results indicated that the V-Sm coating stabilized the surface SEI film of the material and inhibited the growth of charge transfer resistance (Rct). XPS analysis of the electrodes after cycling showed that the V-Sm coating effectively protected the material by isolating it from direct contact with the electrolyte, suppressing the decomposition of the electrolyte during cycling, and reducing adverse side reactions between the material and the electrolyte, thereby enhancing the overall electrochemical performance of the material.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"8 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Surface Modification of Regenerated and Repaired LiNi0.5Co0.2Mn0.3O2 Single Crystal\",\"authors\":\"Jiaxing Han, Weijian Zhang, Yuhui Zhao, Zongbing Chen, Wei Zhang, Yingqing Bao, Xiaozhen Wu, Aigang Zhen, Na Li, Binglong Zhu, Yan Zhuang\",\"doi\":\"10.1016/j.jallcom.2024.177689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the relatively small particle size of single crystals, the high specific surface area increases the side reactions between the electrode and the electrolyte. Without proper surface modification, single-crystal particles tend to interact directly with the electrolyte, leading to side reactions that impair the electrochemical performance of the material. To address this issue, constructing a coating layer on the material's surface is one effective solution. In this study, a wet-coating technique was employed to co-coat single-crystal LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> cathode material with vanadium (V) and samarium (Sm). SEM and TEM tests revealed the presence of a V-Sm coating layer with a thickness of approximately 1-3<!-- --> <!-- -->nm on the surface of the coated samples. The coated material demonstrated a capacity retention rate of 86.5% after 450 cycles at a 1<!-- --> <!-- -->C rate (1<!-- --> <!-- -->C=160 mAh·g<sup>-1</sup>), which represents an improvement of about 6.7% compared to the original material. EIS results indicated that the V-Sm coating stabilized the surface SEI film of the material and inhibited the growth of charge transfer resistance (Rct). XPS analysis of the electrodes after cycling showed that the V-Sm coating effectively protected the material by isolating it from direct contact with the electrolyte, suppressing the decomposition of the electrolyte during cycling, and reducing adverse side reactions between the material and the electrolyte, thereby enhancing the overall electrochemical performance of the material.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.177689\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177689","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于单晶的粒径相对较小,高比表面积会增加电极与电解质之间的副反应。如果不进行适当的表面改性,单晶颗粒往往会直接与电解质发生作用,从而导致副反应,损害材料的电化学性能。为解决这一问题,在材料表面构建涂层是一种有效的解决方案。本研究采用湿涂层技术在单晶 LiNi0.5Co0.2Mn0.3O2 阴极材料表面镀上了钒(V)和钐(Sm)。SEM 和 TEM 测试显示,涂层样品表面存在厚度约为 1-3 nm 的 V-Sm 涂层。涂层材料在 1 C 速率(1 C=160 mAh-g-1)下循环 450 次后,容量保持率达到 86.5%,与原始材料相比提高了约 6.7%。EIS 结果表明,V-Sm 涂层稳定了材料表面的 SEI 膜,抑制了电荷转移电阻(Rct)的增长。对电极进行循环后的 XPS 分析表明,V-Sm 涂层有效地保护了材料,使其与电解液隔绝直接接触,抑制了循环过程中电解液的分解,减少了材料与电解液之间的不良副反应,从而提高了材料的整体电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Surface Modification of Regenerated and Repaired LiNi0.5Co0.2Mn0.3O2 Single Crystal
Due to the relatively small particle size of single crystals, the high specific surface area increases the side reactions between the electrode and the electrolyte. Without proper surface modification, single-crystal particles tend to interact directly with the electrolyte, leading to side reactions that impair the electrochemical performance of the material. To address this issue, constructing a coating layer on the material's surface is one effective solution. In this study, a wet-coating technique was employed to co-coat single-crystal LiNi0.5Co0.2Mn0.3O2 cathode material with vanadium (V) and samarium (Sm). SEM and TEM tests revealed the presence of a V-Sm coating layer with a thickness of approximately 1-3 nm on the surface of the coated samples. The coated material demonstrated a capacity retention rate of 86.5% after 450 cycles at a 1 C rate (1 C=160 mAh·g-1), which represents an improvement of about 6.7% compared to the original material. EIS results indicated that the V-Sm coating stabilized the surface SEI film of the material and inhibited the growth of charge transfer resistance (Rct). XPS analysis of the electrodes after cycling showed that the V-Sm coating effectively protected the material by isolating it from direct contact with the electrolyte, suppressing the decomposition of the electrolyte during cycling, and reducing adverse side reactions between the material and the electrolyte, thereby enhancing the overall electrochemical performance of the material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Advancements in Magnetic Nanoparticle Design: SiO2@Fe3O4 Core/Shell Nanoparticles with Size-Tunable Magnetic Responses Precise Control of Metal-Insulator Transition Temperature in La-Substituted La0.7Ca0.3MnO3 via Ionic Radius Tuning Enhancing low temperature properties through nano-structured lithium iron phosphate and solid liquid interface control by LATP Enhanced energy storage performance of Mn-doped NBT-based flexible films by defect engineering Effect of the synergistic effect of Cr and Mo on the solidification microstructure and mechanical properties of NiAl-based high-entropy alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1