用于提高光催化 H2O2 产率的 F- 表面修饰氧化锌及其 fs-TAS 研究

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-11-20 DOI:10.1016/j.jmat.2024.100974
Xin Zhou, Chenbin Ai, Xiaojing Wang, Zhen Wu, Jianjun Zhang
{"title":"用于提高光催化 H2O2 产率的 F- 表面修饰氧化锌及其 fs-TAS 研究","authors":"Xin Zhou, Chenbin Ai, Xiaojing Wang, Zhen Wu, Jianjun Zhang","doi":"10.1016/j.jmat.2024.100974","DOIUrl":null,"url":null,"abstract":"Pure ZnO exhibits low photocatalytic H<sub>2</sub>O<sub>2</sub> production activity due to the rapid charge recombination. To realize the spatial separation of photogenerated electrons and holes, constructing an electron transfer channel on the ZnO surface is an effective approach. This study successfully modified the surface of ZnO using F<sup>–</sup> (ZnO/F) by introducing NH<sub>4</sub>F in an aqueous phase photocatalytic system. The F<sup>–</sup> is adsorbed on the ZnO surface by Coulombic force and significantly improves the photocatalytic H<sub>2</sub>O<sub>2</sub> production performance of ZnO, with the highest efficiency of 4137.2 μmol·g<sup>–1</sup>·L<sup>–1</sup>·h<sup>–-1</sup>. The photocatalytic performance enhancement mechanism of ZnO/F is explained in terms of electron transfer dynamics by femtosecond transient absorption spectroscopy (fs-TAS) measurements. F<sup>–</sup> surface modification constructs a new ultrafast electron transport pathway from the ZnO CB to F<sup>–</sup>, and the optimal ZnO/F exhibits the fastest interfacial electron transfer lifetime of 5.8 ps. The F<sup>–</sup> surface modification effectively facilitates the charge separation, thereby increasing the number of electrons available for photocatalytic H<sub>2</sub>O<sub>2</sub> reaction. This study has revealed the roles of F<sup>–</sup> surface modification in the photocatalytic H<sub>2</sub>O<sub>2</sub> production by ZnO and provides guidance for ionic modification to improve photocatalytic performance.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"112 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"F− surface modified ZnO for enhanced photocatalytic H2O2 production and its fs-TAS investigation\",\"authors\":\"Xin Zhou, Chenbin Ai, Xiaojing Wang, Zhen Wu, Jianjun Zhang\",\"doi\":\"10.1016/j.jmat.2024.100974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pure ZnO exhibits low photocatalytic H<sub>2</sub>O<sub>2</sub> production activity due to the rapid charge recombination. To realize the spatial separation of photogenerated electrons and holes, constructing an electron transfer channel on the ZnO surface is an effective approach. This study successfully modified the surface of ZnO using F<sup>–</sup> (ZnO/F) by introducing NH<sub>4</sub>F in an aqueous phase photocatalytic system. The F<sup>–</sup> is adsorbed on the ZnO surface by Coulombic force and significantly improves the photocatalytic H<sub>2</sub>O<sub>2</sub> production performance of ZnO, with the highest efficiency of 4137.2 μmol·g<sup>–1</sup>·L<sup>–1</sup>·h<sup>–-1</sup>. The photocatalytic performance enhancement mechanism of ZnO/F is explained in terms of electron transfer dynamics by femtosecond transient absorption spectroscopy (fs-TAS) measurements. F<sup>–</sup> surface modification constructs a new ultrafast electron transport pathway from the ZnO CB to F<sup>–</sup>, and the optimal ZnO/F exhibits the fastest interfacial electron transfer lifetime of 5.8 ps. The F<sup>–</sup> surface modification effectively facilitates the charge separation, thereby increasing the number of electrons available for photocatalytic H<sub>2</sub>O<sub>2</sub> reaction. This study has revealed the roles of F<sup>–</sup> surface modification in the photocatalytic H<sub>2</sub>O<sub>2</sub> production by ZnO and provides guidance for ionic modification to improve photocatalytic performance.\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmat.2024.100974\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100974","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于电荷快速重组,纯氧化锌的光催化 H2O2 生成活性较低。为了实现光生电子和空穴的空间分离,在氧化锌表面构建电子传输通道是一种有效的方法。本研究通过在水相光催化体系中引入 NH4F,成功地利用 F- (ZnO/F)修饰了 ZnO 表面。F- 通过库仑力吸附在 ZnO 表面,显著提高了 ZnO 的光催化产生 H2O2 的性能,最高效率达到 4137.2 μmol-g-1-L-1-h-1。飞秒瞬态吸收光谱(fs-TAS)测量从电子传递动力学角度解释了 ZnO/F 的光催化性能增强机制。F- 表面修饰构建了一条从 ZnO CB 到 F- 的新的超快电子传输途径,最佳的 ZnO/F 表现出 5.8 ps 的最快界面电子传输寿命。F- 表面修饰有效地促进了电荷分离,从而增加了可用于光催化 H2O2 反应的电子数量。这项研究揭示了 F- 表面修饰在 ZnO 光催化产生 H2O2 过程中的作用,并为离子修饰提高光催化性能提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
F− surface modified ZnO for enhanced photocatalytic H2O2 production and its fs-TAS investigation
Pure ZnO exhibits low photocatalytic H2O2 production activity due to the rapid charge recombination. To realize the spatial separation of photogenerated electrons and holes, constructing an electron transfer channel on the ZnO surface is an effective approach. This study successfully modified the surface of ZnO using F (ZnO/F) by introducing NH4F in an aqueous phase photocatalytic system. The F is adsorbed on the ZnO surface by Coulombic force and significantly improves the photocatalytic H2O2 production performance of ZnO, with the highest efficiency of 4137.2 μmol·g–1·L–1·h–-1. The photocatalytic performance enhancement mechanism of ZnO/F is explained in terms of electron transfer dynamics by femtosecond transient absorption spectroscopy (fs-TAS) measurements. F surface modification constructs a new ultrafast electron transport pathway from the ZnO CB to F, and the optimal ZnO/F exhibits the fastest interfacial electron transfer lifetime of 5.8 ps. The F surface modification effectively facilitates the charge separation, thereby increasing the number of electrons available for photocatalytic H2O2 reaction. This study has revealed the roles of F surface modification in the photocatalytic H2O2 production by ZnO and provides guidance for ionic modification to improve photocatalytic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism Synergistic effects lead to high thermoelectric performance of iodine doped pseudo-binary layered GeSb2Te4 Surface oxygen vacancies in amorphous Fe2O3 tailored nonlinear optical properties for ultrafast photonics High temperature magnetoelectric effect in Fe2TeO6 F− surface modified ZnO for enhanced photocatalytic H2O2 production and its fs-TAS investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1