Hai-Ning Wang, Xing Meng, Yitao Cao, Shun-Li Li, Ya-Qian Lan
{"title":"聚氧化金属酸盐-贵金属杂化团簇中的原子精度金属-金属氧化物界面","authors":"Hai-Ning Wang, Xing Meng, Yitao Cao, Shun-Li Li, Ya-Qian Lan","doi":"10.1002/smll.202408884","DOIUrl":null,"url":null,"abstract":"Metal-metal oxide hybrid materials, typically composed of metal nanoparticles anchored on metal oxides matrix, are devoted enormous attentions as famous heterogeneous catalysts. The interactions between noble metals and metal oxides as well as their interfaces have been proven to be the origin of their excellent catalytic performance. Deep understandings on the interactions between noble metals and metal oxides at atomic precision, thus to precisely assess their contributions to catalysis, can serve as basic principles for catalyst design. In recent years, polyoxometalates (POMs), which in principle can be regarded as atomically precise metal oxide clusters, have been shown to have strong affinity to noble metals, thus forming diverse kinds of POM-noble metal hybrid clusters. Their well-resolved atomically precise structures and hybrid nature promise them as ideal platforms to understand the interfaces and interactions between noble metals and metal oxides. In this review, metal-metal oxide interface is classified into different categories based on the different configurations of hybrid clusters, and aims to understand the interface structures and electronic correlations between POMs and noble metals at the atomic precision. Based on these basic understandings, the study provides the perspectives on the challenges and research efforts to be paid in the future.","PeriodicalId":228,"journal":{"name":"Small","volume":"178 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomically Precise Metal–Metal Oxide Interface in Polyoxometalate-Noble Metal Hybrid Clusters\",\"authors\":\"Hai-Ning Wang, Xing Meng, Yitao Cao, Shun-Li Li, Ya-Qian Lan\",\"doi\":\"10.1002/smll.202408884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-metal oxide hybrid materials, typically composed of metal nanoparticles anchored on metal oxides matrix, are devoted enormous attentions as famous heterogeneous catalysts. The interactions between noble metals and metal oxides as well as their interfaces have been proven to be the origin of their excellent catalytic performance. Deep understandings on the interactions between noble metals and metal oxides at atomic precision, thus to precisely assess their contributions to catalysis, can serve as basic principles for catalyst design. In recent years, polyoxometalates (POMs), which in principle can be regarded as atomically precise metal oxide clusters, have been shown to have strong affinity to noble metals, thus forming diverse kinds of POM-noble metal hybrid clusters. Their well-resolved atomically precise structures and hybrid nature promise them as ideal platforms to understand the interfaces and interactions between noble metals and metal oxides. In this review, metal-metal oxide interface is classified into different categories based on the different configurations of hybrid clusters, and aims to understand the interface structures and electronic correlations between POMs and noble metals at the atomic precision. Based on these basic understandings, the study provides the perspectives on the challenges and research efforts to be paid in the future.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202408884\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408884","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomically Precise Metal–Metal Oxide Interface in Polyoxometalate-Noble Metal Hybrid Clusters
Metal-metal oxide hybrid materials, typically composed of metal nanoparticles anchored on metal oxides matrix, are devoted enormous attentions as famous heterogeneous catalysts. The interactions between noble metals and metal oxides as well as their interfaces have been proven to be the origin of their excellent catalytic performance. Deep understandings on the interactions between noble metals and metal oxides at atomic precision, thus to precisely assess their contributions to catalysis, can serve as basic principles for catalyst design. In recent years, polyoxometalates (POMs), which in principle can be regarded as atomically precise metal oxide clusters, have been shown to have strong affinity to noble metals, thus forming diverse kinds of POM-noble metal hybrid clusters. Their well-resolved atomically precise structures and hybrid nature promise them as ideal platforms to understand the interfaces and interactions between noble metals and metal oxides. In this review, metal-metal oxide interface is classified into different categories based on the different configurations of hybrid clusters, and aims to understand the interface structures and electronic correlations between POMs and noble metals at the atomic precision. Based on these basic understandings, the study provides the perspectives on the challenges and research efforts to be paid in the future.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.