Dorrit E. Jacob, Richard A. Stern, Janina Czas, Magnus Reutter, Sandra Piazolo, Thomas Stachel
{"title":"多晶金刚石聚集体及其在地球深层碳循环中的作用","authors":"Dorrit E. Jacob, Richard A. Stern, Janina Czas, Magnus Reutter, Sandra Piazolo, Thomas Stachel","doi":"10.1016/j.gca.2024.10.021","DOIUrl":null,"url":null,"abstract":"Polycrystalline diamond aggregates (PDAs) are small rocks composed mostly of diamond grains, but often containing also peridotitic, eclogitic and/or websteritic minerals as accessory phases. PDAs are formed rapidly in Earth’s mantle, and the diamonds preserve heterogeneity not often seen in monocrystalline diamond. Here, diamond grains from forty-three PDAs from the Venetia diamond mine (RSA) with grain-sizes < 1 mm are presented. They have heterogeneous and complex cathodoluminescence signatures that are best explained by multiple, separate diamond growth episodes from compositionally distinct COH fluids/melts. The diamonds show a large range of nitrogen concentrations (0.5 to 2,891 at. ppm), δ<ce:sup loc=\"post\">15</ce:sup>N (−4.3 to + 16.8 ‰) and δ<ce:sup loc=\"post\">13</ce:sup>C values (−27.8 to −7.6 ‰). The positive δ<ce:sup loc=\"post\">15</ce:sup>N median of + 6.4 ‰ and negative δ<ce:sup loc=\"post\">13</ce:sup>C median of −21.2 ‰ indicate derivation of the diamond-forming fluid from organic materials in subducted oceanic crust and lithosphere. Two PDAs have δ<ce:sup loc=\"post\">13</ce:sup>C and δ<ce:sup loc=\"post\">15</ce:sup>N values typical for Earth’s mantle. Thirty-three PDAs contain websteritic garnets, or peridotitic garnets and clinopyroxenes and/or micas. Unradiogenic εNd<ce:inf loc=\"post\">i</ce:inf> values in the garnets (−15.9 to −29.7) and clinopyroxene (−8.3) and δ<ce:sup loc=\"post\">18</ce:sup>O values of 6.49 to 8.09 ‰ in websteritic garnets are consistent with an origin from subducted altered oceanic crust and support the findings from N and C systematics in the diamonds. Nitrogen aggregation data for the diamonds range from 25 % to 100 %B and vary by as much as 60 % within some individual PDAs. We explain the geochemical and isotopic heterogeneity of diamonds and silicates as well as the complex cathodoluminescence features with a model of episodic melt/fluid −rock interaction involving a reducing asthenospheric melt in the cratonic roots or the thermal boundary layer. We suggest that large volumes of PDA are formed in the cratonic roots and thermal boundary layer by this mechanism, making them an important reservoir for carbon storage, which is corroborated with their locally high abundance (ca. 20 %) in some kimberlites.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"39 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polycrystalline diamond aggregates and their role in Earth’s deep carbon cycle\",\"authors\":\"Dorrit E. Jacob, Richard A. Stern, Janina Czas, Magnus Reutter, Sandra Piazolo, Thomas Stachel\",\"doi\":\"10.1016/j.gca.2024.10.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polycrystalline diamond aggregates (PDAs) are small rocks composed mostly of diamond grains, but often containing also peridotitic, eclogitic and/or websteritic minerals as accessory phases. PDAs are formed rapidly in Earth’s mantle, and the diamonds preserve heterogeneity not often seen in monocrystalline diamond. Here, diamond grains from forty-three PDAs from the Venetia diamond mine (RSA) with grain-sizes < 1 mm are presented. They have heterogeneous and complex cathodoluminescence signatures that are best explained by multiple, separate diamond growth episodes from compositionally distinct COH fluids/melts. The diamonds show a large range of nitrogen concentrations (0.5 to 2,891 at. ppm), δ<ce:sup loc=\\\"post\\\">15</ce:sup>N (−4.3 to + 16.8 ‰) and δ<ce:sup loc=\\\"post\\\">13</ce:sup>C values (−27.8 to −7.6 ‰). The positive δ<ce:sup loc=\\\"post\\\">15</ce:sup>N median of + 6.4 ‰ and negative δ<ce:sup loc=\\\"post\\\">13</ce:sup>C median of −21.2 ‰ indicate derivation of the diamond-forming fluid from organic materials in subducted oceanic crust and lithosphere. Two PDAs have δ<ce:sup loc=\\\"post\\\">13</ce:sup>C and δ<ce:sup loc=\\\"post\\\">15</ce:sup>N values typical for Earth’s mantle. Thirty-three PDAs contain websteritic garnets, or peridotitic garnets and clinopyroxenes and/or micas. Unradiogenic εNd<ce:inf loc=\\\"post\\\">i</ce:inf> values in the garnets (−15.9 to −29.7) and clinopyroxene (−8.3) and δ<ce:sup loc=\\\"post\\\">18</ce:sup>O values of 6.49 to 8.09 ‰ in websteritic garnets are consistent with an origin from subducted altered oceanic crust and support the findings from N and C systematics in the diamonds. Nitrogen aggregation data for the diamonds range from 25 % to 100 %B and vary by as much as 60 % within some individual PDAs. We explain the geochemical and isotopic heterogeneity of diamonds and silicates as well as the complex cathodoluminescence features with a model of episodic melt/fluid −rock interaction involving a reducing asthenospheric melt in the cratonic roots or the thermal boundary layer. We suggest that large volumes of PDA are formed in the cratonic roots and thermal boundary layer by this mechanism, making them an important reservoir for carbon storage, which is corroborated with their locally high abundance (ca. 20 %) in some kimberlites.\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gca.2024.10.021\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.10.021","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Polycrystalline diamond aggregates and their role in Earth’s deep carbon cycle
Polycrystalline diamond aggregates (PDAs) are small rocks composed mostly of diamond grains, but often containing also peridotitic, eclogitic and/or websteritic minerals as accessory phases. PDAs are formed rapidly in Earth’s mantle, and the diamonds preserve heterogeneity not often seen in monocrystalline diamond. Here, diamond grains from forty-three PDAs from the Venetia diamond mine (RSA) with grain-sizes < 1 mm are presented. They have heterogeneous and complex cathodoluminescence signatures that are best explained by multiple, separate diamond growth episodes from compositionally distinct COH fluids/melts. The diamonds show a large range of nitrogen concentrations (0.5 to 2,891 at. ppm), δ15N (−4.3 to + 16.8 ‰) and δ13C values (−27.8 to −7.6 ‰). The positive δ15N median of + 6.4 ‰ and negative δ13C median of −21.2 ‰ indicate derivation of the diamond-forming fluid from organic materials in subducted oceanic crust and lithosphere. Two PDAs have δ13C and δ15N values typical for Earth’s mantle. Thirty-three PDAs contain websteritic garnets, or peridotitic garnets and clinopyroxenes and/or micas. Unradiogenic εNdi values in the garnets (−15.9 to −29.7) and clinopyroxene (−8.3) and δ18O values of 6.49 to 8.09 ‰ in websteritic garnets are consistent with an origin from subducted altered oceanic crust and support the findings from N and C systematics in the diamonds. Nitrogen aggregation data for the diamonds range from 25 % to 100 %B and vary by as much as 60 % within some individual PDAs. We explain the geochemical and isotopic heterogeneity of diamonds and silicates as well as the complex cathodoluminescence features with a model of episodic melt/fluid −rock interaction involving a reducing asthenospheric melt in the cratonic roots or the thermal boundary layer. We suggest that large volumes of PDA are formed in the cratonic roots and thermal boundary layer by this mechanism, making them an important reservoir for carbon storage, which is corroborated with their locally high abundance (ca. 20 %) in some kimberlites.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.