光阳极/电解质界面改性促进 Cu2SnS3 点敏化太阳能 PEC 电池中的高效氢气进化

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-11-19 DOI:10.1021/acs.langmuir.4c03364
Ao Chen, Chuang Chen, Jinshan Cao, Xiufen Chen, Shuai Shao, Yang Lian, Wei Zheng
{"title":"光阳极/电解质界面改性促进 Cu2SnS3 点敏化太阳能 PEC 电池中的高效氢气进化","authors":"Ao Chen, Chuang Chen, Jinshan Cao, Xiufen Chen, Shuai Shao, Yang Lian, Wei Zheng","doi":"10.1021/acs.langmuir.4c03364","DOIUrl":null,"url":null,"abstract":"It is proven through transmission electron microscope (TEM) analysis that solar sensitizer Cu<sub>2</sub>SnS<sub>3</sub> (CTS) dots prepared via the hot-injection route are nonspherical, polyhedral nanocrystals with the size of ∼11 nm. CTS dots were deposited into a porous TiO<sub>2</sub> layer to form CTS/TiO<sub>2</sub>, an effective type II heterojunction in photoanodes. The electronic and energy band structures of TiO<sub>2</sub> and CTS were studied by the plane-wave ultrasoft pseudopotential method based on density functional theory (DFT) and verified by ultraviolet–visible (UV–vis) spectroscopy. UV–vis and Photoluminescence (PL) spectra show that the CTS/TiO<sub>2</sub> photoanode exhibits wider visible-light absorption as well as lower charge recombination. ZnS quantum dots (QDs) deposited on the CTS/TiO<sub>2</sub> photoanode through the in situ successive ion layer adsorption and reaction (SILAR) method as the passivation layer can inhibit the reverse carrier transfer and increase the photocurrent density by building a potential barrier on the CTS/TiO<sub>2</sub> photoanode and electrolyte interface. When 2-layer ZnS QDs are deposited, the maximum photocurrent density of the photoelectrochemical (PEC) cell composed of a ZnS/CTS/TiO<sub>2</sub> photoanode, a Pt counter electrode, and Na<sub>2</sub>SO<sub>4</sub> solution electrolyte is 8.43 mA/cm<sup>2</sup> and the maximum applied bias photon-to-current efficiency (ABPE) is 7.79%. Under 1 sun (AM 1.5, 100 mW/cm<sup>2</sup>) with 0.6 V bias, its hydrogen yield reached 125.7 μmol·cm<sup>–2</sup> after 4 h with the rate of 31.4 μmol·cm<sup>–2</sup>·h<sup>–1</sup> in contrast to the yield of 107.86 μmol·cm<sup>–2</sup> with the rate of 21.3 μmol·cm<sup>–2</sup>·h<sup>–1</sup> for the CTS/TiO<sub>2</sub> photoanode.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"14 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoanode/Electrolyte Interface Modification for Efficient Hydrogen Evolution in Cu2SnS3 Dots-Sensitized Solar PEC Cells\",\"authors\":\"Ao Chen, Chuang Chen, Jinshan Cao, Xiufen Chen, Shuai Shao, Yang Lian, Wei Zheng\",\"doi\":\"10.1021/acs.langmuir.4c03364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proven through transmission electron microscope (TEM) analysis that solar sensitizer Cu<sub>2</sub>SnS<sub>3</sub> (CTS) dots prepared via the hot-injection route are nonspherical, polyhedral nanocrystals with the size of ∼11 nm. CTS dots were deposited into a porous TiO<sub>2</sub> layer to form CTS/TiO<sub>2</sub>, an effective type II heterojunction in photoanodes. The electronic and energy band structures of TiO<sub>2</sub> and CTS were studied by the plane-wave ultrasoft pseudopotential method based on density functional theory (DFT) and verified by ultraviolet–visible (UV–vis) spectroscopy. UV–vis and Photoluminescence (PL) spectra show that the CTS/TiO<sub>2</sub> photoanode exhibits wider visible-light absorption as well as lower charge recombination. ZnS quantum dots (QDs) deposited on the CTS/TiO<sub>2</sub> photoanode through the in situ successive ion layer adsorption and reaction (SILAR) method as the passivation layer can inhibit the reverse carrier transfer and increase the photocurrent density by building a potential barrier on the CTS/TiO<sub>2</sub> photoanode and electrolyte interface. When 2-layer ZnS QDs are deposited, the maximum photocurrent density of the photoelectrochemical (PEC) cell composed of a ZnS/CTS/TiO<sub>2</sub> photoanode, a Pt counter electrode, and Na<sub>2</sub>SO<sub>4</sub> solution electrolyte is 8.43 mA/cm<sup>2</sup> and the maximum applied bias photon-to-current efficiency (ABPE) is 7.79%. Under 1 sun (AM 1.5, 100 mW/cm<sup>2</sup>) with 0.6 V bias, its hydrogen yield reached 125.7 μmol·cm<sup>–2</sup> after 4 h with the rate of 31.4 μmol·cm<sup>–2</sup>·h<sup>–1</sup> in contrast to the yield of 107.86 μmol·cm<sup>–2</sup> with the rate of 21.3 μmol·cm<sup>–2</sup>·h<sup>–1</sup> for the CTS/TiO<sub>2</sub> photoanode.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03364\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03364","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过透射电子显微镜(TEM)分析证明,通过热注入路线制备的太阳能敏化剂 Cu2SnS3(CTS)点是非球形的多面体纳米晶体,大小为 11 纳米。将 CTS 点沉积到多孔的 TiO2 层中形成 CTS/TiO2,这是一种有效的光阳极 II 型异质结。利用基于密度泛函理论(DFT)的平面波超软伪势法研究了 TiO2 和 CTS 的电子和能带结构,并通过紫外-可见(UV-vis)光谱进行了验证。紫外可见光谱和光致发光(PL)光谱显示,CTS/TiO2 光阳极具有更广泛的可见光吸收和更低的电荷重组。通过原位连续离子层吸附和反应(SILAR)方法在 CTS/TiO2 光阳极上沉积 ZnS 量子点(QDs)作为钝化层,可以在 CTS/TiO2 光阳极和电解质界面上建立势垒,从而抑制载流子反向转移,提高光电流密度。当沉积 2 层 ZnS QD 时,由 ZnS/CTS/TiO2 光阳极、铂对电极和 Na2SO4 溶液电解质组成的光电化学(PEC)电池的最大光电流密度为 8.43 mA/cm2,最大外加偏压光子对电流效率(ABPE)为 7.79%。在阳光(AM 1.5,100 mW/cm2)照射下,偏压为 0.6 V,4 小时后氢气产率达到 125.7 μmol-cm-2,速率为 31.4 μmol-cm-2-h-1,而 CTS/TiO2 光阳极的产率为 107.86 μmol-cm-2,速率为 21.3 μmol-cm-2-h-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photoanode/Electrolyte Interface Modification for Efficient Hydrogen Evolution in Cu2SnS3 Dots-Sensitized Solar PEC Cells
It is proven through transmission electron microscope (TEM) analysis that solar sensitizer Cu2SnS3 (CTS) dots prepared via the hot-injection route are nonspherical, polyhedral nanocrystals with the size of ∼11 nm. CTS dots were deposited into a porous TiO2 layer to form CTS/TiO2, an effective type II heterojunction in photoanodes. The electronic and energy band structures of TiO2 and CTS were studied by the plane-wave ultrasoft pseudopotential method based on density functional theory (DFT) and verified by ultraviolet–visible (UV–vis) spectroscopy. UV–vis and Photoluminescence (PL) spectra show that the CTS/TiO2 photoanode exhibits wider visible-light absorption as well as lower charge recombination. ZnS quantum dots (QDs) deposited on the CTS/TiO2 photoanode through the in situ successive ion layer adsorption and reaction (SILAR) method as the passivation layer can inhibit the reverse carrier transfer and increase the photocurrent density by building a potential barrier on the CTS/TiO2 photoanode and electrolyte interface. When 2-layer ZnS QDs are deposited, the maximum photocurrent density of the photoelectrochemical (PEC) cell composed of a ZnS/CTS/TiO2 photoanode, a Pt counter electrode, and Na2SO4 solution electrolyte is 8.43 mA/cm2 and the maximum applied bias photon-to-current efficiency (ABPE) is 7.79%. Under 1 sun (AM 1.5, 100 mW/cm2) with 0.6 V bias, its hydrogen yield reached 125.7 μmol·cm–2 after 4 h with the rate of 31.4 μmol·cm–2·h–1 in contrast to the yield of 107.86 μmol·cm–2 with the rate of 21.3 μmol·cm–2·h–1 for the CTS/TiO2 photoanode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
CO2 Microbubbles in Silicone Oil (Part II: Henry’s Constant and Anomalous Diffusion) Polyhydroxykanoate-Assisted Photocatalytic TiO2 Films for Hydrogen Production Excipient Induced Unusual Phase Separation in Bovine Serum Albumin Solution: An Explicit Role Played by Ion-Hydration Structural Reorganizations and Nanodomain Emergence in Lipid Membranes Driven by Ionic Liquids Performance of xMg3Al1-LDH@ZIF-8 in High Efficiency Electrocatalytic Reduction of CO2 to CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1