提高聚吡咯/单宁酸纳米复合材料对有机染料的吸附能力

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-11-20 DOI:10.1021/acs.langmuir.4c03158
Nehapadma Mohanty, Sai Sushree Rath, Braja N. Patra
{"title":"提高聚吡咯/单宁酸纳米复合材料对有机染料的吸附能力","authors":"Nehapadma Mohanty, Sai Sushree Rath, Braja N. Patra","doi":"10.1021/acs.langmuir.4c03158","DOIUrl":null,"url":null,"abstract":"Methyl orange (MO) and methylene blue (MB) dyes are toxic and carcinogenic; thus, their presence in water bodies has been a major concern. Designing an efficient adsorbent for removal of these dyes is a scientific challenge for researchers. In this work, a polypyrrole–tannic acid nanocomposite was prepared via a chemical oxidation method and used as a novel adsorbent for removing these toxic dyes. The synthesized nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller methods. The effect of different parameters on adsorption such as adsorbent doses, temperature, pH, initial dye concentration, and contact time was studied. The adsorption was in line with pseudo-second-order kinetics and the Langmuir isotherm model. Δ<i>G</i>°, Δ<i>H</i>°, and Δ<i>S</i>° were calculated to ascertain the feasibility of adsorption. The maximum adsorption capacities attained for this adsorbent were found to be 204.08 mg/g toward the MO dye and 217.39 mg/g toward the MB dye.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"251 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Adsorption of Organic Dyes onto a Polypyrrole/Tannic Acid Nanocomposite\",\"authors\":\"Nehapadma Mohanty, Sai Sushree Rath, Braja N. Patra\",\"doi\":\"10.1021/acs.langmuir.4c03158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methyl orange (MO) and methylene blue (MB) dyes are toxic and carcinogenic; thus, their presence in water bodies has been a major concern. Designing an efficient adsorbent for removal of these dyes is a scientific challenge for researchers. In this work, a polypyrrole–tannic acid nanocomposite was prepared via a chemical oxidation method and used as a novel adsorbent for removing these toxic dyes. The synthesized nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller methods. The effect of different parameters on adsorption such as adsorbent doses, temperature, pH, initial dye concentration, and contact time was studied. The adsorption was in line with pseudo-second-order kinetics and the Langmuir isotherm model. Δ<i>G</i>°, Δ<i>H</i>°, and Δ<i>S</i>° were calculated to ascertain the feasibility of adsorption. The maximum adsorption capacities attained for this adsorbent were found to be 204.08 mg/g toward the MO dye and 217.39 mg/g toward the MB dye.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"251 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03158\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03158","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

甲基橙(MO)和亚甲基蓝(MB)染料具有毒性和致癌性,因此,它们在水体中的存在一直是人们关注的焦点。设计一种高效的吸附剂来去除这些染料是研究人员面临的一项科学挑战。本研究通过化学氧化法制备了聚吡咯-单宁酸纳米复合材料,并将其用作去除这些有毒染料的新型吸附剂。通过透射电子显微镜、扫描电子显微镜、X 射线衍射、傅立叶变换红外光谱和布鲁瑙尔-艾美特-泰勒法对合成的纳米复合材料进行了表征。研究了吸附剂剂量、温度、pH 值、初始染料浓度和接触时间等不同参数对吸附的影响。吸附符合假二阶动力学和 Langmuir 等温线模型。计算了 ΔG°、ΔH° 和 ΔS°,以确定吸附的可行性。该吸附剂对 MO 染料的最大吸附容量为 204.08 毫克/克,对 MB 染料的最大吸附容量为 217.39 毫克/克。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Adsorption of Organic Dyes onto a Polypyrrole/Tannic Acid Nanocomposite
Methyl orange (MO) and methylene blue (MB) dyes are toxic and carcinogenic; thus, their presence in water bodies has been a major concern. Designing an efficient adsorbent for removal of these dyes is a scientific challenge for researchers. In this work, a polypyrrole–tannic acid nanocomposite was prepared via a chemical oxidation method and used as a novel adsorbent for removing these toxic dyes. The synthesized nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller methods. The effect of different parameters on adsorption such as adsorbent doses, temperature, pH, initial dye concentration, and contact time was studied. The adsorption was in line with pseudo-second-order kinetics and the Langmuir isotherm model. ΔG°, ΔH°, and ΔS° were calculated to ascertain the feasibility of adsorption. The maximum adsorption capacities attained for this adsorbent were found to be 204.08 mg/g toward the MO dye and 217.39 mg/g toward the MB dye.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
CO2 Microbubbles in Silicone Oil (Part II: Henry’s Constant and Anomalous Diffusion) Polyhydroxykanoate-Assisted Photocatalytic TiO2 Films for Hydrogen Production Excipient Induced Unusual Phase Separation in Bovine Serum Albumin Solution: An Explicit Role Played by Ion-Hydration Structural Reorganizations and Nanodomain Emergence in Lipid Membranes Driven by Ionic Liquids Performance of xMg3Al1-LDH@ZIF-8 in High Efficiency Electrocatalytic Reduction of CO2 to CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1