具有负塞贝克系数、自修复和高温度敏感性的导电离子热电水凝胶,用于光热转换和非接触式传感装置

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2024-11-19 DOI:10.1016/j.cej.2024.157823
Wenqi Sha, Yuqin Wang, Ming Xiao, Yingjun Fang, Pengyu zhu, Zhilei Wang, Siliang Wang, Wei Zeng, Jinling Zhao, Limin Ruan
{"title":"具有负塞贝克系数、自修复和高温度敏感性的导电离子热电水凝胶,用于光热转换和非接触式传感装置","authors":"Wenqi Sha, Yuqin Wang, Ming Xiao, Yingjun Fang, Pengyu zhu, Zhilei Wang, Siliang Wang, Wei Zeng, Jinling Zhao, Limin Ruan","doi":"10.1016/j.cej.2024.157823","DOIUrl":null,"url":null,"abstract":"Ionic thermoelectric (i-TE) hydrogels have a high thermal energy utilization rate for low-grade heat, presenting a renewable energy supply option for sustainable global development. Conventional i-TE materials need to be conductive, stable and environmentally friendly, which remains a challenge today. This study presents a highly temperature-sensitive i-TE hydrogel with negative Seebeck coefficient, self-healing properties and conductive for photothermoelectric (PTE) conversion and non-contact sensing. The prepared PSFC-0.5 hydrogel exhibits a negative Seebeck coefficient and features a dual-crosslinked structure of polyacrylamide (PAM) and sodium alginate (SA), which provides the hydrogel with good mechanical strength (&gt;2.7 kPa) and tensile properties (&gt;1300 %). Photothermal (PT) conversion properties is effectively enhanced by combining carbon black/multi-walled carbon nanotubes (CB/MWCNTs) PT materials, and the addition of FeCl<sub>3</sub> provides anions and cations for ionic diffusion. Under a 5 K temperature gradient, the optimized Seebeck coefficient was measured to be −2.01 mV·K<sup>−1</sup> and the conductivity was approximately 1.70 mS·cm<sup>−1</sup>. Moreover, reversible hydrogen bonding interactions provides ionic hydrogels with good mechanical strength and self-healing capabilities. Due to the high sensitivity of PSFC-0.5 hydrogel to temperature, it can be effectively utilized in the field of non-contact sensing for the precise detection of temperature signals. This study presents an effective method for fabricating hydrogels that exhibit exceptional toughness and electric properties, demonstrating its significant potential for applications in PTE conversion and non-contact sensing technologies.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"64 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductive ionic thermoelectric hydrogel with negative Seebeck coefficient, self-healing and highly sensitive to temperature for photothermoelectric conversion and non-contact sensing device\",\"authors\":\"Wenqi Sha, Yuqin Wang, Ming Xiao, Yingjun Fang, Pengyu zhu, Zhilei Wang, Siliang Wang, Wei Zeng, Jinling Zhao, Limin Ruan\",\"doi\":\"10.1016/j.cej.2024.157823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionic thermoelectric (i-TE) hydrogels have a high thermal energy utilization rate for low-grade heat, presenting a renewable energy supply option for sustainable global development. Conventional i-TE materials need to be conductive, stable and environmentally friendly, which remains a challenge today. This study presents a highly temperature-sensitive i-TE hydrogel with negative Seebeck coefficient, self-healing properties and conductive for photothermoelectric (PTE) conversion and non-contact sensing. The prepared PSFC-0.5 hydrogel exhibits a negative Seebeck coefficient and features a dual-crosslinked structure of polyacrylamide (PAM) and sodium alginate (SA), which provides the hydrogel with good mechanical strength (&gt;2.7 kPa) and tensile properties (&gt;1300 %). Photothermal (PT) conversion properties is effectively enhanced by combining carbon black/multi-walled carbon nanotubes (CB/MWCNTs) PT materials, and the addition of FeCl<sub>3</sub> provides anions and cations for ionic diffusion. Under a 5 K temperature gradient, the optimized Seebeck coefficient was measured to be −2.01 mV·K<sup>−1</sup> and the conductivity was approximately 1.70 mS·cm<sup>−1</sup>. Moreover, reversible hydrogen bonding interactions provides ionic hydrogels with good mechanical strength and self-healing capabilities. Due to the high sensitivity of PSFC-0.5 hydrogel to temperature, it can be effectively utilized in the field of non-contact sensing for the precise detection of temperature signals. This study presents an effective method for fabricating hydrogels that exhibit exceptional toughness and electric properties, demonstrating its significant potential for applications in PTE conversion and non-contact sensing technologies.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157823\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157823","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

离子热电(i-TE)水凝胶对低品位热量具有很高的热能利用率,为全球可持续发展提供了一种可再生能源供应选择。传统的 i-TE 材料需要具有导电性、稳定性和环境友好性,这在今天仍是一项挑战。本研究提出了一种具有负塞贝克系数、自愈合性能和导电性能的高温度敏感 i-TE 水凝胶,可用于光热电转换和非接触传感。所制备的 PSFC-0.5 水凝胶具有负塞贝克系数,并具有聚丙烯酰胺(PAM)和海藻酸钠(SA)的双重交联结构,从而使水凝胶具有良好的机械强度(2.7 kPa)和拉伸性能(1300 %)。通过结合炭黑/多壁碳纳米管(CB/MWCNTs)PT 材料,光热(PT)转换性能得到了有效增强,而氯化铁的加入则为离子扩散提供了阴阳离子。在 5 K 的温度梯度下,测得优化的塞贝克系数为 -2.01 mV-K-1,电导率约为 1.70 mS-cm-1。此外,可逆氢键相互作用使离子水凝胶具有良好的机械强度和自愈能力。由于 PSFC-0.5 水凝胶对温度的高灵敏度,它可以有效地用于非接触传感领域,精确检测温度信号。本研究提出了一种制造具有优异韧性和电特性的水凝胶的有效方法,展示了其在 PTE 转换和非接触传感技术中的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conductive ionic thermoelectric hydrogel with negative Seebeck coefficient, self-healing and highly sensitive to temperature for photothermoelectric conversion and non-contact sensing device
Ionic thermoelectric (i-TE) hydrogels have a high thermal energy utilization rate for low-grade heat, presenting a renewable energy supply option for sustainable global development. Conventional i-TE materials need to be conductive, stable and environmentally friendly, which remains a challenge today. This study presents a highly temperature-sensitive i-TE hydrogel with negative Seebeck coefficient, self-healing properties and conductive for photothermoelectric (PTE) conversion and non-contact sensing. The prepared PSFC-0.5 hydrogel exhibits a negative Seebeck coefficient and features a dual-crosslinked structure of polyacrylamide (PAM) and sodium alginate (SA), which provides the hydrogel with good mechanical strength (>2.7 kPa) and tensile properties (>1300 %). Photothermal (PT) conversion properties is effectively enhanced by combining carbon black/multi-walled carbon nanotubes (CB/MWCNTs) PT materials, and the addition of FeCl3 provides anions and cations for ionic diffusion. Under a 5 K temperature gradient, the optimized Seebeck coefficient was measured to be −2.01 mV·K−1 and the conductivity was approximately 1.70 mS·cm−1. Moreover, reversible hydrogen bonding interactions provides ionic hydrogels with good mechanical strength and self-healing capabilities. Due to the high sensitivity of PSFC-0.5 hydrogel to temperature, it can be effectively utilized in the field of non-contact sensing for the precise detection of temperature signals. This study presents an effective method for fabricating hydrogels that exhibit exceptional toughness and electric properties, demonstrating its significant potential for applications in PTE conversion and non-contact sensing technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
An aptamer-integrated conductive microneedle biosensor for real-time transdermal cortisol monitoring Oxygen-Deficient Bi2MoO6@sRuO2@HA heterojunction for photocatalytic treatment of drug-resistant bacterial infections Bioremediation of heavy metal ion (Cu2+) by live probiotic Janus microparticles using droplet-based microfluidic technique Alpha-ketoglutarate supramolecular network accelerates diabetic wound healing through exudates management and neovascularization Mxene-decorated spinel oxides as innovative activators of peroxymonosulfate for degradation of caffeine in WWTP effluents: Insights into mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1