Sujeong Kim, Jemin Lee, Hojun Moon, Jaehun Lee, Hyunsub Shin, Jun Sung Lee, Sang Woo Joo, Jeeyoung Yoo, Misook Kang
{"title":"优化单向堆叠磷酸铁锂正极中的 Li+ 离子扩散途径:增强电化学性能和长期稳定性","authors":"Sujeong Kim, Jemin Lee, Hojun Moon, Jaehun Lee, Hyunsub Shin, Jun Sung Lee, Sang Woo Joo, Jeeyoung Yoo, Misook Kang","doi":"10.1016/j.cej.2024.157788","DOIUrl":null,"url":null,"abstract":"In this study, we introduce an innovative approach to enhance the electrochemical performance and longevity of lithium iron phosphate (LiFePO<sub>4</sub>, LFP) cathode materials through a novel saccharide-assisted unidirectional stacking method. The inherent challenges of LFP, such as low lithium-ion diffusion and limited electrical conductivity, are addressed by leveraging saccharides as binders to achieve precise alignment of LFP particles. This method facilitates the formation of unobstructed lithium-ion pathways, significantly enhancing Li<sup>+</sup> ion diffusion rates and cycle stability. The unmodified LFP cathode exhibited a lithium-ion diffusion coefficient (D<sub>Li</sub><sup>+</sup>) of 7.79 × 10<sup>−12</sup> cm<sup>2</sup> s<sup>−1</sup>, while the S5 (sucrose 5 %) LFP cathode demonstrated a superior diffusion coefficient of 3.5 × 10<sup>−10</sup> cm<sup>2</sup> s<sup>−1</sup>. Additionally, the S5-LFP achieved a remarkable discharge capacity of 165.1 mAh g<sup>−1</sup> at a 0.1C rate, compared to 147.8 mAh g<sup>−1</sup> for the unmodified LFP. The cycle stability was also significantly improved, with the S5-LFP retaining 86.3 % of its capacity after 2,000 cycles at a 5C rate, whereas the unmodified LFP retained only 79.2 % under the same conditions. These improvements are attributed to the optimized particle alignment achieved through saccharide-assisted stacking, which enhances Li<sup>+</sup> ion diffusion and overall electrochemical performance. Additionally, the structural integrity and electrochemical stability of the S5-LFP cathodes were thoroughly validated through a comprehensive set of characterization methods and electrochemical tests, highlighting the scalability and cost-effectiveness of this technique for battery manufacturing. This breakthrough in cathode material design offers a promising pathway for the development of high-performance, durable lithium-ion batteries, particularly for applications in electric vehicles and other demanding energy storage systems.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"230 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Li+ ion diffusion pathways in unidirectional stacked lithium iron phosphate cathodes: Enhanced electrochemical performance and long-term stability\",\"authors\":\"Sujeong Kim, Jemin Lee, Hojun Moon, Jaehun Lee, Hyunsub Shin, Jun Sung Lee, Sang Woo Joo, Jeeyoung Yoo, Misook Kang\",\"doi\":\"10.1016/j.cej.2024.157788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce an innovative approach to enhance the electrochemical performance and longevity of lithium iron phosphate (LiFePO<sub>4</sub>, LFP) cathode materials through a novel saccharide-assisted unidirectional stacking method. The inherent challenges of LFP, such as low lithium-ion diffusion and limited electrical conductivity, are addressed by leveraging saccharides as binders to achieve precise alignment of LFP particles. This method facilitates the formation of unobstructed lithium-ion pathways, significantly enhancing Li<sup>+</sup> ion diffusion rates and cycle stability. The unmodified LFP cathode exhibited a lithium-ion diffusion coefficient (D<sub>Li</sub><sup>+</sup>) of 7.79 × 10<sup>−12</sup> cm<sup>2</sup> s<sup>−1</sup>, while the S5 (sucrose 5 %) LFP cathode demonstrated a superior diffusion coefficient of 3.5 × 10<sup>−10</sup> cm<sup>2</sup> s<sup>−1</sup>. Additionally, the S5-LFP achieved a remarkable discharge capacity of 165.1 mAh g<sup>−1</sup> at a 0.1C rate, compared to 147.8 mAh g<sup>−1</sup> for the unmodified LFP. The cycle stability was also significantly improved, with the S5-LFP retaining 86.3 % of its capacity after 2,000 cycles at a 5C rate, whereas the unmodified LFP retained only 79.2 % under the same conditions. These improvements are attributed to the optimized particle alignment achieved through saccharide-assisted stacking, which enhances Li<sup>+</sup> ion diffusion and overall electrochemical performance. Additionally, the structural integrity and electrochemical stability of the S5-LFP cathodes were thoroughly validated through a comprehensive set of characterization methods and electrochemical tests, highlighting the scalability and cost-effectiveness of this technique for battery manufacturing. This breakthrough in cathode material design offers a promising pathway for the development of high-performance, durable lithium-ion batteries, particularly for applications in electric vehicles and other demanding energy storage systems.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"230 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157788\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157788","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Optimized Li+ ion diffusion pathways in unidirectional stacked lithium iron phosphate cathodes: Enhanced electrochemical performance and long-term stability
In this study, we introduce an innovative approach to enhance the electrochemical performance and longevity of lithium iron phosphate (LiFePO4, LFP) cathode materials through a novel saccharide-assisted unidirectional stacking method. The inherent challenges of LFP, such as low lithium-ion diffusion and limited electrical conductivity, are addressed by leveraging saccharides as binders to achieve precise alignment of LFP particles. This method facilitates the formation of unobstructed lithium-ion pathways, significantly enhancing Li+ ion diffusion rates and cycle stability. The unmodified LFP cathode exhibited a lithium-ion diffusion coefficient (DLi+) of 7.79 × 10−12 cm2 s−1, while the S5 (sucrose 5 %) LFP cathode demonstrated a superior diffusion coefficient of 3.5 × 10−10 cm2 s−1. Additionally, the S5-LFP achieved a remarkable discharge capacity of 165.1 mAh g−1 at a 0.1C rate, compared to 147.8 mAh g−1 for the unmodified LFP. The cycle stability was also significantly improved, with the S5-LFP retaining 86.3 % of its capacity after 2,000 cycles at a 5C rate, whereas the unmodified LFP retained only 79.2 % under the same conditions. These improvements are attributed to the optimized particle alignment achieved through saccharide-assisted stacking, which enhances Li+ ion diffusion and overall electrochemical performance. Additionally, the structural integrity and electrochemical stability of the S5-LFP cathodes were thoroughly validated through a comprehensive set of characterization methods and electrochemical tests, highlighting the scalability and cost-effectiveness of this technique for battery manufacturing. This breakthrough in cathode material design offers a promising pathway for the development of high-performance, durable lithium-ion batteries, particularly for applications in electric vehicles and other demanding energy storage systems.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.