Chenyu Zhou, Zhenfeng Zhong, Huaizhi Yang, Yan Zhang, Zhiquan Pan, Hong Zhou
{"title":"以双苯并咪唑为前体的苯基膦酸赋予环氧树脂防火安全性和高机械强度","authors":"Chenyu Zhou, Zhenfeng Zhong, Huaizhi Yang, Yan Zhang, Zhiquan Pan, Hong Zhou","doi":"10.1016/j.cej.2024.157773","DOIUrl":null,"url":null,"abstract":"Preparation of fire safety and high mechanical strength epoxy resin (EP) has become a hot topic for its valuable applications in construction and other fields. Here, bis-2-aminobenzimidazole-modified phenyl phosphonates (PP-BMI) with symmetric structures were synthesized by a simple chemical modification strategy, and its fine structure and composition have been thoroughly characterized. Due to the multifaceted functions of PP-BMI in both gaseous and condensed phases, EP composite with 5 wt% PP-BMI reached a UL-94 V-0 rating and high LOI of 34.3 %. The excellent fire safety of EP/5PP-BMI was further verified with a significant reduction of 57 %, 52 % and 46 % in peak heat release rate (PHRR), total heat release (THR) and peak CO production (P-COP), respectively, compared to the original EP. The flame retardancy of PP-BMI on EP can be attributed to the dilution of non-combustion gases, free radical trapping and catalytic charring functions. More importantly, PP-BMI can further enhance the mechanical properties of EP, which is closely related to the interaction between PP-BMI and EP matrix. Furthermore, EP/PP-BMI composites have good resistance to acids and alkalis, ensuring long-lasting flame retardancy and mechanical properties. This work provides a new strategy for realizing epoxy composites with high fire safety and excellent mechanical properties in construction and multifaceted areas.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"121 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fire safety and high mechanical strength epoxy resin enabled by a bis-benzimidazole-primed phenyl phosphonic acid\",\"authors\":\"Chenyu Zhou, Zhenfeng Zhong, Huaizhi Yang, Yan Zhang, Zhiquan Pan, Hong Zhou\",\"doi\":\"10.1016/j.cej.2024.157773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preparation of fire safety and high mechanical strength epoxy resin (EP) has become a hot topic for its valuable applications in construction and other fields. Here, bis-2-aminobenzimidazole-modified phenyl phosphonates (PP-BMI) with symmetric structures were synthesized by a simple chemical modification strategy, and its fine structure and composition have been thoroughly characterized. Due to the multifaceted functions of PP-BMI in both gaseous and condensed phases, EP composite with 5 wt% PP-BMI reached a UL-94 V-0 rating and high LOI of 34.3 %. The excellent fire safety of EP/5PP-BMI was further verified with a significant reduction of 57 %, 52 % and 46 % in peak heat release rate (PHRR), total heat release (THR) and peak CO production (P-COP), respectively, compared to the original EP. The flame retardancy of PP-BMI on EP can be attributed to the dilution of non-combustion gases, free radical trapping and catalytic charring functions. More importantly, PP-BMI can further enhance the mechanical properties of EP, which is closely related to the interaction between PP-BMI and EP matrix. Furthermore, EP/PP-BMI composites have good resistance to acids and alkalis, ensuring long-lasting flame retardancy and mechanical properties. This work provides a new strategy for realizing epoxy composites with high fire safety and excellent mechanical properties in construction and multifaceted areas.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157773\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157773","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
防火安全、高机械强度环氧树脂(EP)因其在建筑等领域的重要应用而成为热门话题。本文采用简单的化学改性策略合成了具有对称结构的双-2-氨基苯并咪唑改性苯基膦酸盐(PP-BMI),并对其精细结构和组成进行了深入研究。由于 PP-BMI 在气相和凝聚相中的多重功能,含有 5 wt% PP-BMI 的 EP 复合材料达到了 UL-94 V-0 级,LOI 高达 34.3%。EP/5PP-BMI 的峰值热释放率 (PHRR)、总热释放率 (THR) 和峰值 CO 生成量 (P-COP) 与原始 EP 相比分别显著降低了 57%、52% 和 46%,进一步验证了 EP/5PP-BMI 卓越的防火安全性。PP-BMI 对 EP 的阻燃效果可归因于稀释非燃烧气体、捕获自由基和催化炭化功能。更重要的是,PP-BMI 能进一步提高 EP 的机械性能,这与 PP-BMI 和 EP 基体之间的相互作用密切相关。此外,EP/PP-BMI 复合材料还具有良好的耐酸碱性,确保了其持久的阻燃性和机械性能。这项工作为在建筑和多元领域实现具有高防火安全性和优异机械性能的环氧复合材料提供了一种新策略。
Fire safety and high mechanical strength epoxy resin enabled by a bis-benzimidazole-primed phenyl phosphonic acid
Preparation of fire safety and high mechanical strength epoxy resin (EP) has become a hot topic for its valuable applications in construction and other fields. Here, bis-2-aminobenzimidazole-modified phenyl phosphonates (PP-BMI) with symmetric structures were synthesized by a simple chemical modification strategy, and its fine structure and composition have been thoroughly characterized. Due to the multifaceted functions of PP-BMI in both gaseous and condensed phases, EP composite with 5 wt% PP-BMI reached a UL-94 V-0 rating and high LOI of 34.3 %. The excellent fire safety of EP/5PP-BMI was further verified with a significant reduction of 57 %, 52 % and 46 % in peak heat release rate (PHRR), total heat release (THR) and peak CO production (P-COP), respectively, compared to the original EP. The flame retardancy of PP-BMI on EP can be attributed to the dilution of non-combustion gases, free radical trapping and catalytic charring functions. More importantly, PP-BMI can further enhance the mechanical properties of EP, which is closely related to the interaction between PP-BMI and EP matrix. Furthermore, EP/PP-BMI composites have good resistance to acids and alkalis, ensuring long-lasting flame retardancy and mechanical properties. This work provides a new strategy for realizing epoxy composites with high fire safety and excellent mechanical properties in construction and multifaceted areas.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.