Ritu Raj, Muzahir Iqbal, Gajendra Prasad Singh, Krishna Kanta Haldar
{"title":"通过将 Li2Mn3ZnO8 集成到 Ti3C2Tx MXene 纳米复合材料中以提高电化学性能,从而实现先进的超级电容器和氢气进化反应","authors":"Ritu Raj, Muzahir Iqbal, Gajendra Prasad Singh, Krishna Kanta Haldar","doi":"10.1002/adem.202401647","DOIUrl":null,"url":null,"abstract":"<p>In this study, we combined Li<sub>2</sub>Mn<sub>3</sub>ZnO<sub>8</sub> with MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) to improve performance in supercapacitors and hydrogen evolution reactions. MXenes are known for their electrical conductivity and high surface area, making them promising for energy storage. The Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/Li<sub>2</sub>Mn<sub>3</sub>ZnO<sub>8</sub> composite electrode showed a specific capacitance of 182 F g<sup>-1</sup> at 1 A g<sup>-1</sup>, outperforming individual Li<sub>2</sub>Mn<sub>3</sub>ZnO<sub>8</sub> and MXene electrodes. Even after 3,000 cycles, the composite retained 71% of its initial capacitance. This research introduces innovative electrode materials for next-generation supercapacitors and hydrogen evolution applications, contributing to sustainable energy solutions.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Electrochemical Performance through Li2Mn3ZnO8 Integration into Ti3C2Tx MXene Nanocomposites for Advanced Supercapacitors and Hydrogen Evolution Reactions\",\"authors\":\"Ritu Raj, Muzahir Iqbal, Gajendra Prasad Singh, Krishna Kanta Haldar\",\"doi\":\"10.1002/adem.202401647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we combined Li<sub>2</sub>Mn<sub>3</sub>ZnO<sub>8</sub> with MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) to improve performance in supercapacitors and hydrogen evolution reactions. MXenes are known for their electrical conductivity and high surface area, making them promising for energy storage. The Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/Li<sub>2</sub>Mn<sub>3</sub>ZnO<sub>8</sub> composite electrode showed a specific capacitance of 182 F g<sup>-1</sup> at 1 A g<sup>-1</sup>, outperforming individual Li<sub>2</sub>Mn<sub>3</sub>ZnO<sub>8</sub> and MXene electrodes. Even after 3,000 cycles, the composite retained 71% of its initial capacitance. This research introduces innovative electrode materials for next-generation supercapacitors and hydrogen evolution applications, contributing to sustainable energy solutions.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 22\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401647\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401647","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing Electrochemical Performance through Li2Mn3ZnO8 Integration into Ti3C2Tx MXene Nanocomposites for Advanced Supercapacitors and Hydrogen Evolution Reactions
In this study, we combined Li2Mn3ZnO8 with MXene (Ti3C2Tx) to improve performance in supercapacitors and hydrogen evolution reactions. MXenes are known for their electrical conductivity and high surface area, making them promising for energy storage. The Ti3C2Tx/Li2Mn3ZnO8 composite electrode showed a specific capacitance of 182 F g-1 at 1 A g-1, outperforming individual Li2Mn3ZnO8 and MXene electrodes. Even after 3,000 cycles, the composite retained 71% of its initial capacitance. This research introduces innovative electrode materials for next-generation supercapacitors and hydrogen evolution applications, contributing to sustainable energy solutions.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.