Shivangi Sachar, Shubham Shubham, Piotr Doerffer, Anton Ianakiev, Paweł Flaszyński
{"title":"基于风速概率预测的城市环境风力涡轮机选型与选址","authors":"Shivangi Sachar, Shubham Shubham, Piotr Doerffer, Anton Ianakiev, Paweł Flaszyński","doi":"10.1049/rpg2.13132","DOIUrl":null,"url":null,"abstract":"<p>Wind energy being a free source of energy is becoming popular over the past decades and is being studied extensively. Integration of wind turbines is now being expanded to urban and offshore settings in contrast to the conventional wind farms in relatively open areas. The direct installation of wind turbines poses a potential risk, as it may result in financial losses in scenarios characterized by inadequate wind resource availability. Therefore, wind energy availability analysis in such urban environments is a necessity. This research paper presents an in-depth investigation conducted to predict the exploitable wind energy at four distinct locations within Nottingham, United Kingdom. Subsequently, the most suitable location, Clifton Campus at Nottingham Trent University, is identified where a comprehensive comparative analysis of power generation from eleven different wind turbine models is performed. The findings derived from this analysis suggest that the QR6 wind turbine emerges as the optimal choice for subsequent experimental investigations to be conducted in partnership with Nottingham Trent University. Furthermore, this study explores the selection of an appropriate probability density function for assessing wind potential considering seven different distributions namely, Gamma, Weibull, Rayleigh, Log-normal, Genextreme, Gumbel, and Normal. Ultimately, the Weibull probability distribution is selected, and various methodologies are employed to estimate its parameters, which are then ranked using statistical assessments.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3285-3300"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13132","citationCount":"0","resultStr":"{\"title\":\"Wind speed probabilistic forecast based wind turbine selection and siting for urban environment\",\"authors\":\"Shivangi Sachar, Shubham Shubham, Piotr Doerffer, Anton Ianakiev, Paweł Flaszyński\",\"doi\":\"10.1049/rpg2.13132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wind energy being a free source of energy is becoming popular over the past decades and is being studied extensively. Integration of wind turbines is now being expanded to urban and offshore settings in contrast to the conventional wind farms in relatively open areas. The direct installation of wind turbines poses a potential risk, as it may result in financial losses in scenarios characterized by inadequate wind resource availability. Therefore, wind energy availability analysis in such urban environments is a necessity. This research paper presents an in-depth investigation conducted to predict the exploitable wind energy at four distinct locations within Nottingham, United Kingdom. Subsequently, the most suitable location, Clifton Campus at Nottingham Trent University, is identified where a comprehensive comparative analysis of power generation from eleven different wind turbine models is performed. The findings derived from this analysis suggest that the QR6 wind turbine emerges as the optimal choice for subsequent experimental investigations to be conducted in partnership with Nottingham Trent University. Furthermore, this study explores the selection of an appropriate probability density function for assessing wind potential considering seven different distributions namely, Gamma, Weibull, Rayleigh, Log-normal, Genextreme, Gumbel, and Normal. Ultimately, the Weibull probability distribution is selected, and various methodologies are employed to estimate its parameters, which are then ranked using statistical assessments.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 15\",\"pages\":\"3285-3300\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13132\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13132\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13132","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Wind speed probabilistic forecast based wind turbine selection and siting for urban environment
Wind energy being a free source of energy is becoming popular over the past decades and is being studied extensively. Integration of wind turbines is now being expanded to urban and offshore settings in contrast to the conventional wind farms in relatively open areas. The direct installation of wind turbines poses a potential risk, as it may result in financial losses in scenarios characterized by inadequate wind resource availability. Therefore, wind energy availability analysis in such urban environments is a necessity. This research paper presents an in-depth investigation conducted to predict the exploitable wind energy at four distinct locations within Nottingham, United Kingdom. Subsequently, the most suitable location, Clifton Campus at Nottingham Trent University, is identified where a comprehensive comparative analysis of power generation from eleven different wind turbine models is performed. The findings derived from this analysis suggest that the QR6 wind turbine emerges as the optimal choice for subsequent experimental investigations to be conducted in partnership with Nottingham Trent University. Furthermore, this study explores the selection of an appropriate probability density function for assessing wind potential considering seven different distributions namely, Gamma, Weibull, Rayleigh, Log-normal, Genextreme, Gumbel, and Normal. Ultimately, the Weibull probability distribution is selected, and various methodologies are employed to estimate its parameters, which are then ranked using statistical assessments.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf