Abdelrahman Hussein, Byungki Kim, Kim Verbeken, Tom Depover
{"title":"利用基于相场的扩散和捕集模型研究晶界畸变对氢通量的影响","authors":"Abdelrahman Hussein, Byungki Kim, Kim Verbeken, Tom Depover","doi":"10.1002/adem.202401561","DOIUrl":null,"url":null,"abstract":"<p>Understanding hydrogen–grain boundary (GB) interactions is critical to the analysis of hydrogen embrittlement in metals. This work presents a mesoscale fully kinetic model to investigate the effect of GB misorientation on hydrogen diffusion and trapping using phase-field-based representative volume elements (RVEs). The flux equation consists of three terms: a diffusive term and two terms for high and low angle grain boundary (H/LAGB) trapping. Uptake simulations show that decreasing the grain size results in higher hydrogen content due to increasing the GB density. Permeation simulations show that GBs are high-flux paths due to their higher enrichment with hydrogen. Since HAGBs have higher enrichment than LAGBs, due to their higher trap-binding energy, they generally have the highest hydrogen flux. Nevertheless, the flux shows a convoluted behavior as it depends on the local concentration, alignment of GB with external concentration gradient as well as the GB network connectivity. Finally, decreasing the grain size resulted in a larger break-through time and a larger steady-state exit flux.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Grain Boundary Misorientation on Hydrogen Flux Using a Phase-Field-Based Diffusion and Trapping Model\",\"authors\":\"Abdelrahman Hussein, Byungki Kim, Kim Verbeken, Tom Depover\",\"doi\":\"10.1002/adem.202401561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding hydrogen–grain boundary (GB) interactions is critical to the analysis of hydrogen embrittlement in metals. This work presents a mesoscale fully kinetic model to investigate the effect of GB misorientation on hydrogen diffusion and trapping using phase-field-based representative volume elements (RVEs). The flux equation consists of three terms: a diffusive term and two terms for high and low angle grain boundary (H/LAGB) trapping. Uptake simulations show that decreasing the grain size results in higher hydrogen content due to increasing the GB density. Permeation simulations show that GBs are high-flux paths due to their higher enrichment with hydrogen. Since HAGBs have higher enrichment than LAGBs, due to their higher trap-binding energy, they generally have the highest hydrogen flux. Nevertheless, the flux shows a convoluted behavior as it depends on the local concentration, alignment of GB with external concentration gradient as well as the GB network connectivity. Finally, decreasing the grain size resulted in a larger break-through time and a larger steady-state exit flux.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 22\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401561\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401561","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Effect of Grain Boundary Misorientation on Hydrogen Flux Using a Phase-Field-Based Diffusion and Trapping Model
Understanding hydrogen–grain boundary (GB) interactions is critical to the analysis of hydrogen embrittlement in metals. This work presents a mesoscale fully kinetic model to investigate the effect of GB misorientation on hydrogen diffusion and trapping using phase-field-based representative volume elements (RVEs). The flux equation consists of three terms: a diffusive term and two terms for high and low angle grain boundary (H/LAGB) trapping. Uptake simulations show that decreasing the grain size results in higher hydrogen content due to increasing the GB density. Permeation simulations show that GBs are high-flux paths due to their higher enrichment with hydrogen. Since HAGBs have higher enrichment than LAGBs, due to their higher trap-binding energy, they generally have the highest hydrogen flux. Nevertheless, the flux shows a convoluted behavior as it depends on the local concentration, alignment of GB with external concentration gradient as well as the GB network connectivity. Finally, decreasing the grain size resulted in a larger break-through time and a larger steady-state exit flux.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.