新型 Pὃschl-Teller 电位模型的气态分子摩尔熵预测

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2024-11-14 DOI:10.1002/qua.27505
Maryam Hussein Abdulameer, Ali B. M. Ali, Ahmed K. Nemah, Prakash Kanjariya, Asha Rajiv, Mohit Agarwal, Parjinder Kaur, Abdulrahman A. Almehizia
{"title":"新型 Pὃschl-Teller 电位模型的气态分子摩尔熵预测","authors":"Maryam Hussein Abdulameer,&nbsp;Ali B. M. Ali,&nbsp;Ahmed K. Nemah,&nbsp;Prakash Kanjariya,&nbsp;Asha Rajiv,&nbsp;Mohit Agarwal,&nbsp;Parjinder Kaur,&nbsp;Abdulrahman A. Almehizia","doi":"10.1002/qua.27505","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Pὃschl–Teller potential is a molecular potential energy function that has only been reported for bound state. This Pὃschl–Teller potential is a good representation of many molecules and has not been examined for any thermodynamic property irrespective of its fitness for molecular study. In this study, the molar entropy of four molecules (Pbr, BBr, CsCl, and CsO molecules) is calculated via the molar partition function. The predicted results are compared with the experimental data recorded in the National Institute of Standards and Technology (NIST) database. It is noted that the predicted values for the studied molecules perfectly agree with the experimental results with the following average absolute percentage deviation, PBr is 0.0158%, BBr is 0.0053%, CsCl is 0.0020%, and CsO is 0.0052%. The present model reproduces better results for CsCl and CsO molecules compared to the shifted Tietz–Wei potential and improved Tietz-oscillator previously reported whose average absolute percentage deviation are 0.361% and 0.284% for CsCl and 0.272% and 0.228% for CsO, respectively.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 22","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Molar Entropy of Gaseous Molecules for a New Pὃschl-Teller Potential Model\",\"authors\":\"Maryam Hussein Abdulameer,&nbsp;Ali B. M. Ali,&nbsp;Ahmed K. Nemah,&nbsp;Prakash Kanjariya,&nbsp;Asha Rajiv,&nbsp;Mohit Agarwal,&nbsp;Parjinder Kaur,&nbsp;Abdulrahman A. Almehizia\",\"doi\":\"10.1002/qua.27505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The Pὃschl–Teller potential is a molecular potential energy function that has only been reported for bound state. This Pὃschl–Teller potential is a good representation of many molecules and has not been examined for any thermodynamic property irrespective of its fitness for molecular study. In this study, the molar entropy of four molecules (Pbr, BBr, CsCl, and CsO molecules) is calculated via the molar partition function. The predicted results are compared with the experimental data recorded in the National Institute of Standards and Technology (NIST) database. It is noted that the predicted values for the studied molecules perfectly agree with the experimental results with the following average absolute percentage deviation, PBr is 0.0158%, BBr is 0.0053%, CsCl is 0.0020%, and CsO is 0.0052%. The present model reproduces better results for CsCl and CsO molecules compared to the shifted Tietz–Wei potential and improved Tietz-oscillator previously reported whose average absolute percentage deviation are 0.361% and 0.284% for CsCl and 0.272% and 0.228% for CsO, respectively.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"124 22\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27505\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27505","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Pὃschl-Teller 电位是一种分子势能函数,目前仅有关于结合态的报道。Pὃschl-Teller 电位能很好地代表许多分子,但尚未对其热力学性质进行研究,无论其是否适用于分子研究。本研究通过摩尔分配函数计算了四种分子(Pbr、BBr、CsCl 和 CsO 分子)的摩尔熵。预测结果与美国国家标准与技术研究院(NIST)数据库中记录的实验数据进行了比较。结果表明,所研究分子的预测值与实验结果完全一致,平均绝对百分比偏差如下:PBr 为 0.0158%,BBr 为 0.0053%,CsCl 为 0.0020%,CsO 为 0.0052%。与以前报告的移位铁茨-魏电势和改进的铁茨-振荡器相比,本模型对 CsCl 和 CsO 分子再现了更好的结果,其平均绝对百分比偏差对 CsCl 而言分别为 0.361% 和 0.284%,对 CsO 而言分别为 0.272% 和 0.228%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Molar Entropy of Gaseous Molecules for a New Pὃschl-Teller Potential Model

The Pὃschl–Teller potential is a molecular potential energy function that has only been reported for bound state. This Pὃschl–Teller potential is a good representation of many molecules and has not been examined for any thermodynamic property irrespective of its fitness for molecular study. In this study, the molar entropy of four molecules (Pbr, BBr, CsCl, and CsO molecules) is calculated via the molar partition function. The predicted results are compared with the experimental data recorded in the National Institute of Standards and Technology (NIST) database. It is noted that the predicted values for the studied molecules perfectly agree with the experimental results with the following average absolute percentage deviation, PBr is 0.0158%, BBr is 0.0053%, CsCl is 0.0020%, and CsO is 0.0052%. The present model reproduces better results for CsCl and CsO molecules compared to the shifted Tietz–Wei potential and improved Tietz-oscillator previously reported whose average absolute percentage deviation are 0.361% and 0.284% for CsCl and 0.272% and 0.228% for CsO, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Issue Information Ultralarge Hyperpolarizability, Novel Ladder-Type Heteroarenes Electro-Optic Chromophores: Influence of Fused Heterocyclic π-System and Push–Pull Effect on Nonlinear Optical Properties The Interaction Between Fluorinated Additives and Imidazolyl Ionic Liquid Electrolytes in Lithium Metal Batteries: A First-Principles Study Prediction of Molar Entropy of Gaseous Molecules for a New Pὃschl-Teller Potential Model ISI Energy Change Due to an Edge Deletion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1