利用 PyPSA 电力系统建模工具优化与海上风电场相结合的可逆固体氧化物电池系统容量,用于制氢和储能

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS IET Renewable Power Generation Pub Date : 2024-10-14 DOI:10.1049/rpg2.13134
Jessica Guichard, Robert Rawlinson-Smith, Deborah Greaves
{"title":"利用 PyPSA 电力系统建模工具优化与海上风电场相结合的可逆固体氧化物电池系统容量,用于制氢和储能","authors":"Jessica Guichard,&nbsp;Robert Rawlinson-Smith,&nbsp;Deborah Greaves","doi":"10.1049/rpg2.13134","DOIUrl":null,"url":null,"abstract":"<p>Eight scenarios where high efficiency reversible solid oxide cells (rSOC) are combined with an offshore wind farm are identified. Thanks to the PyPSA power system modelling tool combined with a sensitivity study, optimized rSOC system capacities, hydrogen storage capacities, and subsea cable connection capacities are investigated under various combinations of rSOC system capital cost, prices paid for hydrogen, and electricity prices, which give indications on the most profitable scenario for offshore hydrogen production from a 600 MW wind farm situated 60 km from shore. Low electricity prices (yearly average 45 £/MWh) combined with mild fluctuations (standard deviation 6 or 13 £/MWh) call for dedicated hydrogen production when the hydrogen price exceeds 4 £/kg. High electricity prices (yearly average 118 or 204 £/MWh), combined with extreme fluctuations (standard deviation between 73 and 110 £/MWh), make a reversible system economically profitable. The amount of hydrogen which is recommended to be reconverted into electricity depends on the price paid for hydrogen. Comparison of the optimized cases to the default case of a wind farm without hydrogen production improved profit by at least 3% and up to 908%. Comparison to the default case of dedicated hydrogen production, showed that in the case of low hydrogen prices, an unprofitable scenario can be made profitable, and improvement of profit in the case of a profitable default case starts at 4% and reaches numbers as high as 324%.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3091-3111"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13134","citationCount":"0","resultStr":"{\"title\":\"Optimization of reversible solid oxide cell system capacity combined with an offshore wind farm for hydrogen production and energy storage using the PyPSA power system modelling tool\",\"authors\":\"Jessica Guichard,&nbsp;Robert Rawlinson-Smith,&nbsp;Deborah Greaves\",\"doi\":\"10.1049/rpg2.13134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Eight scenarios where high efficiency reversible solid oxide cells (rSOC) are combined with an offshore wind farm are identified. Thanks to the PyPSA power system modelling tool combined with a sensitivity study, optimized rSOC system capacities, hydrogen storage capacities, and subsea cable connection capacities are investigated under various combinations of rSOC system capital cost, prices paid for hydrogen, and electricity prices, which give indications on the most profitable scenario for offshore hydrogen production from a 600 MW wind farm situated 60 km from shore. Low electricity prices (yearly average 45 £/MWh) combined with mild fluctuations (standard deviation 6 or 13 £/MWh) call for dedicated hydrogen production when the hydrogen price exceeds 4 £/kg. High electricity prices (yearly average 118 or 204 £/MWh), combined with extreme fluctuations (standard deviation between 73 and 110 £/MWh), make a reversible system economically profitable. The amount of hydrogen which is recommended to be reconverted into electricity depends on the price paid for hydrogen. Comparison of the optimized cases to the default case of a wind farm without hydrogen production improved profit by at least 3% and up to 908%. Comparison to the default case of dedicated hydrogen production, showed that in the case of low hydrogen prices, an unprofitable scenario can be made profitable, and improvement of profit in the case of a profitable default case starts at 4% and reaches numbers as high as 324%.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 15\",\"pages\":\"3091-3111\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13134\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13134\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13134","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

确定了将高效可逆固体氧化物电池(rSOC)与海上风电场相结合的八种方案。借助 PyPSA 电力系统建模工具和敏感性研究,在 rSOC 系统资本成本、氢气支付价格和电力价格的不同组合下,对优化的 rSOC 系统容量、氢气存储容量和海底电缆连接容量进行了研究,从而为距离海岸 60 千米的 600 兆瓦风力发电厂的海上氢气生产提供了最有利可图的方案。低电价(年平均 45 英镑/兆瓦时)加上轻微波动(标准偏差为 6 或 13 英镑/兆瓦时)要求在氢价超过 4 英镑/千克时进行专用氢气生产。高电价(年平均 118 或 204 英镑/兆瓦时)加上剧烈波动(标准偏差在 73 至 110 英镑/兆瓦时之间),使得可逆系统在经济上有利可图。建议重新转化为电能的氢气量取决于氢气的价格。将优化案例与不制氢的风电场默认案例进行比较,利润至少提高了 3%,最高提高了 908%。与专门制氢的默认情况比较显示,在氢气价格较低的情况下,无利可图的方案也能盈利,在盈利的默认情况下,利润提高了 4%,最高可达 324%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of reversible solid oxide cell system capacity combined with an offshore wind farm for hydrogen production and energy storage using the PyPSA power system modelling tool

Eight scenarios where high efficiency reversible solid oxide cells (rSOC) are combined with an offshore wind farm are identified. Thanks to the PyPSA power system modelling tool combined with a sensitivity study, optimized rSOC system capacities, hydrogen storage capacities, and subsea cable connection capacities are investigated under various combinations of rSOC system capital cost, prices paid for hydrogen, and electricity prices, which give indications on the most profitable scenario for offshore hydrogen production from a 600 MW wind farm situated 60 km from shore. Low electricity prices (yearly average 45 £/MWh) combined with mild fluctuations (standard deviation 6 or 13 £/MWh) call for dedicated hydrogen production when the hydrogen price exceeds 4 £/kg. High electricity prices (yearly average 118 or 204 £/MWh), combined with extreme fluctuations (standard deviation between 73 and 110 £/MWh), make a reversible system economically profitable. The amount of hydrogen which is recommended to be reconverted into electricity depends on the price paid for hydrogen. Comparison of the optimized cases to the default case of a wind farm without hydrogen production improved profit by at least 3% and up to 908%. Comparison to the default case of dedicated hydrogen production, showed that in the case of low hydrogen prices, an unprofitable scenario can be made profitable, and improvement of profit in the case of a profitable default case starts at 4% and reaches numbers as high as 324%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
期刊最新文献
Impact of using text classifiers for standardising maintenance data of wind turbines on reliability calculations Optimal spatial arrangement of modules for large-scale photovoltaic farms in complex topography Wind speed probabilistic forecast based wind turbine selection and siting for urban environment Front Cover: A novel prediction method for low wind output processes under very few samples based on improved W-DCGAN Identification of transmission line voltage sag sources based on multi-location information convolutional transformer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1