压电到压电(P2P)转换:通过兆赫级纳米机电振动同时实现超薄、透明和独立均聚聚丙烯聚偏二氟乙烯(PVDF)薄膜的β相结晶和极化。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-11-20 DOI:10.1039/d4mh00794h
Robert Komljenovic, Peter C Sherrell, Eirini Goudeli, Amgad R Rezk, Leslie Y Yeo
{"title":"压电到压电(P2P)转换:通过兆赫级纳米机电振动同时实现超薄、透明和独立均聚聚丙烯聚偏二氟乙烯(PVDF)薄膜的β相结晶和极化。","authors":"Robert Komljenovic, Peter C Sherrell, Eirini Goudeli, Amgad R Rezk, Leslie Y Yeo","doi":"10.1039/d4mh00794h","DOIUrl":null,"url":null,"abstract":"<p><p>An unconventional yet facile low-energy method for uniquely synthesizing neat poly(vinylidene fluoride) (PVDF) films for energy harvesting applications by utilizing nanoelectromechanical vibration through a 'piezo-to-piezo' (P2P) mechanism is reported. In this concept, the nanoelectromechanical energy from a piezoelectric substrate is directly coupled into another polarizable material (<i>i.e.</i>, PVDF) during its crystallization to produce an optically transparent micron-thick film that not only exhibits strong piezoelectricity, but is also freestanding-properties ideal for its use for energy harvesting, but which are difficult to achieve through conventional synthesis routes. We show, particularly through <i>in situ</i> characterization, that the unprecedented acceleration associated with the nanoelectromechanical vibration in the form of surface reflected bulk waves (SRBWs) facilitates preferentially-oriented nucleation of the ferroelectric PVDF β-phase, while simultaneously aligning its dipoles to pole the material through the SRBW's intense native evanescent electric field . The resultant neat (additive-free) homopolymer film synthesized through this low voltage method, which requires only -orders-of-magnitude lower than energy-intensive conventional poling methods utilizing high kV electric potentials, is shown to possess a 76% higher macroscale piezoelectric charge coefficient <i>d</i><sub>33</sub>, together with a similar improvement in its power generation output, when compared to gold-standard commercially-poled PVDF films of similar thicknesses.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezo-to-piezo (P2P) conversion: simultaneous β-phase crystallization and poling of ultrathin, transparent and freestanding homopolymer PVDF films <i>via</i> MHz-order nanoelectromechanical vibration.\",\"authors\":\"Robert Komljenovic, Peter C Sherrell, Eirini Goudeli, Amgad R Rezk, Leslie Y Yeo\",\"doi\":\"10.1039/d4mh00794h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An unconventional yet facile low-energy method for uniquely synthesizing neat poly(vinylidene fluoride) (PVDF) films for energy harvesting applications by utilizing nanoelectromechanical vibration through a 'piezo-to-piezo' (P2P) mechanism is reported. In this concept, the nanoelectromechanical energy from a piezoelectric substrate is directly coupled into another polarizable material (<i>i.e.</i>, PVDF) during its crystallization to produce an optically transparent micron-thick film that not only exhibits strong piezoelectricity, but is also freestanding-properties ideal for its use for energy harvesting, but which are difficult to achieve through conventional synthesis routes. We show, particularly through <i>in situ</i> characterization, that the unprecedented acceleration associated with the nanoelectromechanical vibration in the form of surface reflected bulk waves (SRBWs) facilitates preferentially-oriented nucleation of the ferroelectric PVDF β-phase, while simultaneously aligning its dipoles to pole the material through the SRBW's intense native evanescent electric field . The resultant neat (additive-free) homopolymer film synthesized through this low voltage method, which requires only -orders-of-magnitude lower than energy-intensive conventional poling methods utilizing high kV electric potentials, is shown to possess a 76% higher macroscale piezoelectric charge coefficient <i>d</i><sub>33</sub>, together with a similar improvement in its power generation output, when compared to gold-standard commercially-poled PVDF films of similar thicknesses.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh00794h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh00794h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

报告采用一种非常规但简便的低能耗方法,通过 "压电-压电"(P2P)机制,利用纳米机电振动独特合成用于能量收集应用的纯净聚偏二氟乙烯(PVDF)薄膜。在这一概念中,来自压电基底的纳米机电能量在结晶过程中直接耦合到另一种可极化材料(即 PVDF)中,从而产生一种光学透明的微米厚薄膜,这种薄膜不仅具有很强的压电性,而且是独立的--这些特性非常适合用于能量收集,但通过传统合成路线却很难实现。我们特别通过原位特性分析表明,与表面反射体波(SRBW)形式的纳米机电振动相关的前所未有的加速度促进了铁电 PVDF β 相的优先定向成核,同时通过 SRBW 的高强度原生蒸发电场使其偶极子对齐,从而使材料极化。通过这种低电压方法合成的纯均聚物(无添加剂)薄膜,与使用高千伏电势的高能耗传统极化方法相比,所需的电压仅低几个数量级,与厚度相似的金标准商用极化 PVDF 薄膜相比,其宏观压电电荷系数 d33 高出 76%,发电量也有类似的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piezo-to-piezo (P2P) conversion: simultaneous β-phase crystallization and poling of ultrathin, transparent and freestanding homopolymer PVDF films via MHz-order nanoelectromechanical vibration.

An unconventional yet facile low-energy method for uniquely synthesizing neat poly(vinylidene fluoride) (PVDF) films for energy harvesting applications by utilizing nanoelectromechanical vibration through a 'piezo-to-piezo' (P2P) mechanism is reported. In this concept, the nanoelectromechanical energy from a piezoelectric substrate is directly coupled into another polarizable material (i.e., PVDF) during its crystallization to produce an optically transparent micron-thick film that not only exhibits strong piezoelectricity, but is also freestanding-properties ideal for its use for energy harvesting, but which are difficult to achieve through conventional synthesis routes. We show, particularly through in situ characterization, that the unprecedented acceleration associated with the nanoelectromechanical vibration in the form of surface reflected bulk waves (SRBWs) facilitates preferentially-oriented nucleation of the ferroelectric PVDF β-phase, while simultaneously aligning its dipoles to pole the material through the SRBW's intense native evanescent electric field . The resultant neat (additive-free) homopolymer film synthesized through this low voltage method, which requires only -orders-of-magnitude lower than energy-intensive conventional poling methods utilizing high kV electric potentials, is shown to possess a 76% higher macroscale piezoelectric charge coefficient d33, together with a similar improvement in its power generation output, when compared to gold-standard commercially-poled PVDF films of similar thicknesses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
A high-resolution 3D radiochromic hydrogel photonic crystal dosimeter for clinical radiotherapy. Top-down architecture of magnetized micro-cilia and conductive micro-domes as fully bionic electronic skin for de-coupled multidimensional tactile perception. Correction: Application of carbon-based nanomaterials in Alzheimer's disease. Multifunctional acoustic and mechanical metamaterials prepared from continuous CFRP composites. Progress and perspectives of rapid Joule heating for the preparation of highly efficient catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1