{"title":"芦荟cemannan多糖能抑制邻苯二甲酸盐诱导的结直肠癌细胞活力、转移和干性。","authors":"Pei-Chun Shih, Chung-Hsien Lin, Uvarani Chokkalingam, Ekambaranellore Prakash, Ching-Nan Kao, Chuan-Fa Chang, Wei-Ling Lin","doi":"10.1016/j.ecoenv.2024.117351","DOIUrl":null,"url":null,"abstract":"<p><p>Plasticizers are recognized as environmental pollutants that may be associated with a range of health concerns, including impacts on growth, development, and oncogenic risks. Previous research demonstrated that prolonged exposure to di-(2-ethylhexyl) phthalate and its metabolite mono-(2-ethylhexyl) phthalate contributes to chemotherapeutic drug resistance and stemness in colorectal cancer cells. Aloe vera, an herbaceous plant with a long-standing history in traditional medicine, has attracted considerable attention for its diverse pharmacological properties. This study aimed to investigate the therapeutic potential of polysaccharides extracted from Aloe vera, specifically focusing on their anticancer properties. We eluted polysaccharides from Aloe vera using water and ethanol, resulting in the fractions designated A50 and I50, respectively. We characterized their effects on cell viability, migration, invasion, stemness, and glycosylation of colorectal cancer cells exposed to phthalates. Comprehensive glycan analysis revealed that phthalate exposure induced alterations in glycosylation patterns in colorectal cancer cells. Treatment with A50 and I50 reversed these changes to varying degrees, indicating distinct regulatory roles of the two polysaccharide fractions in colorectal cancer cells subjected to phthalate exposure. A50 exhibited a dose-dependent reduction in cell viability induced by phthalates, whereas I50 demonstrated no such effect. Notably, I50 displayed a notable inhibitory effect on migration, invasion, and stemness induced by phthalates when compared with A50. The differing polysaccharide structures of A50 and I50 may account for their divergent effects on the malignancy of colorectal cancer cells. These findings underscore the potential of Aloe vera polysaccharides in anticancer therapy and highlight the necessity for further investigation into their clinical applications.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"288 ","pages":"117351"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Aloe vera acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells.\",\"authors\":\"Pei-Chun Shih, Chung-Hsien Lin, Uvarani Chokkalingam, Ekambaranellore Prakash, Ching-Nan Kao, Chuan-Fa Chang, Wei-Ling Lin\",\"doi\":\"10.1016/j.ecoenv.2024.117351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasticizers are recognized as environmental pollutants that may be associated with a range of health concerns, including impacts on growth, development, and oncogenic risks. Previous research demonstrated that prolonged exposure to di-(2-ethylhexyl) phthalate and its metabolite mono-(2-ethylhexyl) phthalate contributes to chemotherapeutic drug resistance and stemness in colorectal cancer cells. Aloe vera, an herbaceous plant with a long-standing history in traditional medicine, has attracted considerable attention for its diverse pharmacological properties. This study aimed to investigate the therapeutic potential of polysaccharides extracted from Aloe vera, specifically focusing on their anticancer properties. We eluted polysaccharides from Aloe vera using water and ethanol, resulting in the fractions designated A50 and I50, respectively. We characterized their effects on cell viability, migration, invasion, stemness, and glycosylation of colorectal cancer cells exposed to phthalates. Comprehensive glycan analysis revealed that phthalate exposure induced alterations in glycosylation patterns in colorectal cancer cells. Treatment with A50 and I50 reversed these changes to varying degrees, indicating distinct regulatory roles of the two polysaccharide fractions in colorectal cancer cells subjected to phthalate exposure. A50 exhibited a dose-dependent reduction in cell viability induced by phthalates, whereas I50 demonstrated no such effect. Notably, I50 displayed a notable inhibitory effect on migration, invasion, and stemness induced by phthalates when compared with A50. The differing polysaccharide structures of A50 and I50 may account for their divergent effects on the malignancy of colorectal cancer cells. These findings underscore the potential of Aloe vera polysaccharides in anticancer therapy and highlight the necessity for further investigation into their clinical applications.</p>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"288 \",\"pages\":\"117351\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ecoenv.2024.117351\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117351","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Aloe vera acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells.
Plasticizers are recognized as environmental pollutants that may be associated with a range of health concerns, including impacts on growth, development, and oncogenic risks. Previous research demonstrated that prolonged exposure to di-(2-ethylhexyl) phthalate and its metabolite mono-(2-ethylhexyl) phthalate contributes to chemotherapeutic drug resistance and stemness in colorectal cancer cells. Aloe vera, an herbaceous plant with a long-standing history in traditional medicine, has attracted considerable attention for its diverse pharmacological properties. This study aimed to investigate the therapeutic potential of polysaccharides extracted from Aloe vera, specifically focusing on their anticancer properties. We eluted polysaccharides from Aloe vera using water and ethanol, resulting in the fractions designated A50 and I50, respectively. We characterized their effects on cell viability, migration, invasion, stemness, and glycosylation of colorectal cancer cells exposed to phthalates. Comprehensive glycan analysis revealed that phthalate exposure induced alterations in glycosylation patterns in colorectal cancer cells. Treatment with A50 and I50 reversed these changes to varying degrees, indicating distinct regulatory roles of the two polysaccharide fractions in colorectal cancer cells subjected to phthalate exposure. A50 exhibited a dose-dependent reduction in cell viability induced by phthalates, whereas I50 demonstrated no such effect. Notably, I50 displayed a notable inhibitory effect on migration, invasion, and stemness induced by phthalates when compared with A50. The differing polysaccharide structures of A50 and I50 may account for their divergent effects on the malignancy of colorectal cancer cells. These findings underscore the potential of Aloe vera polysaccharides in anticancer therapy and highlight the necessity for further investigation into their clinical applications.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.