{"title":"利用乙缩醛分子合成可按需降解的聚合物结构。","authors":"Angela Romano, Stefano Frattini, Roberto Miani, Claudio Gioia, Annamaria Celli, Laura Sisti","doi":"10.1002/cssc.202402154","DOIUrl":null,"url":null,"abstract":"<p><p>Developing polymers with labile bonds has attracted increasing attention since it can favor the chemical recycling into oligomers that could be recovered and re-used. Different chemical bonds can break upon exposure to external stimuli, such as thermal, UV, or chemical triggers. Among these, the acetal bond can degrade under mild acidic conditions. This study focuses on the synthesis of polymers constituted by acetal moieties suitable for triggered depolymerization. In particular, the solvent-less polyaddition of 1,4-butanediol and 1,4-butanediol divinyl ether was developed and optimized using a heterogeneous catalyst (Amberlyst 15) at 100 °C. The best conditions in terms of catalyst loading and reagent ratio were determined through a Design-of-Experiment aiming to achieve high conversion, low polydispersity, and desirable molecular weight. The resulting material presented an amorphous character and thermal stability up to 220 °C. It was confirmed responsive in an acidic environment, being completely hydrolyzed in 42 days, while remaining stable at neutral and basic pH. The obtained results represent a proof of concept for the design of pH-responsive materials through solventless, and scalable processes. The acetal moiety may be further exploited to achieve architectures presenting a sustainable end-of-life by implementing a recycling-by-design approach for new adhesives or degradable thermosetting materials.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402154"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Acetal Moieties for the Synthesis of Degradable-on-Demand Polymeric Architectures.\",\"authors\":\"Angela Romano, Stefano Frattini, Roberto Miani, Claudio Gioia, Annamaria Celli, Laura Sisti\",\"doi\":\"10.1002/cssc.202402154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing polymers with labile bonds has attracted increasing attention since it can favor the chemical recycling into oligomers that could be recovered and re-used. Different chemical bonds can break upon exposure to external stimuli, such as thermal, UV, or chemical triggers. Among these, the acetal bond can degrade under mild acidic conditions. This study focuses on the synthesis of polymers constituted by acetal moieties suitable for triggered depolymerization. In particular, the solvent-less polyaddition of 1,4-butanediol and 1,4-butanediol divinyl ether was developed and optimized using a heterogeneous catalyst (Amberlyst 15) at 100 °C. The best conditions in terms of catalyst loading and reagent ratio were determined through a Design-of-Experiment aiming to achieve high conversion, low polydispersity, and desirable molecular weight. The resulting material presented an amorphous character and thermal stability up to 220 °C. It was confirmed responsive in an acidic environment, being completely hydrolyzed in 42 days, while remaining stable at neutral and basic pH. The obtained results represent a proof of concept for the design of pH-responsive materials through solventless, and scalable processes. The acetal moiety may be further exploited to achieve architectures presenting a sustainable end-of-life by implementing a recycling-by-design approach for new adhesives or degradable thermosetting materials.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402154\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402154\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402154","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploiting Acetal Moieties for the Synthesis of Degradable-on-Demand Polymeric Architectures.
Developing polymers with labile bonds has attracted increasing attention since it can favor the chemical recycling into oligomers that could be recovered and re-used. Different chemical bonds can break upon exposure to external stimuli, such as thermal, UV, or chemical triggers. Among these, the acetal bond can degrade under mild acidic conditions. This study focuses on the synthesis of polymers constituted by acetal moieties suitable for triggered depolymerization. In particular, the solvent-less polyaddition of 1,4-butanediol and 1,4-butanediol divinyl ether was developed and optimized using a heterogeneous catalyst (Amberlyst 15) at 100 °C. The best conditions in terms of catalyst loading and reagent ratio were determined through a Design-of-Experiment aiming to achieve high conversion, low polydispersity, and desirable molecular weight. The resulting material presented an amorphous character and thermal stability up to 220 °C. It was confirmed responsive in an acidic environment, being completely hydrolyzed in 42 days, while remaining stable at neutral and basic pH. The obtained results represent a proof of concept for the design of pH-responsive materials through solventless, and scalable processes. The acetal moiety may be further exploited to achieve architectures presenting a sustainable end-of-life by implementing a recycling-by-design approach for new adhesives or degradable thermosetting materials.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology