Raoul D Brand, Mareike Maass, Anatoliy G Grebenyuk, Alexander A Golub, Bernd M Smarsly
{"title":"用一种多功能有机催化剂功能化的商用二氧化硅材料,用于催化液体介质中的酰化反应。","authors":"Raoul D Brand, Mareike Maass, Anatoliy G Grebenyuk, Alexander A Golub, Bernd M Smarsly","doi":"10.1002/cphc.202400936","DOIUrl":null,"url":null,"abstract":"<p><p>Silica materials represent a promising material for the application in heterogeneous organocatalysis due to their readily modifiable surface and chemical inertness. To achieve high catalyst loadings, usually, porous carriers with high surface areas are used, such as special silica monoliths or spherical particles for backed bed reactors. Yet, their synthesis is elaborate, and thus less complex and cheaper alternatives are of interest, especially considering scaling up. In this work, two commercial silica materials functionalized with the organocatalyst 4-(dimethylamino)pyridine (DMAP) were used in catalytic acylation reactions: a mesoporous silica gel (Siliabond®-DMAP) and non-porous silica nanoparticles (Ludox®). Both were successfully used in the acylation of phenylethanol, but the latter required significantly longer reaction times, presumably due to mass-transfer limitations as a consequence of substantial agglomeration that limits the accessible amount of catalyst. Furthermore, it was shown that the influence of the linker molecule is negligible, since both reaction yields and the activation energy remain largely similar. As main result the commercial material Siliabond-DMAP, despite the non-uniform particles, exhibited significant yield in a flow setup, thus demonstrating the potential as support material for application in heterogeneous organocatalysis.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400936"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commercial silica materials functionalized with a versatile organocatalyst for the catalysis of acylation reactions in liquid media.\",\"authors\":\"Raoul D Brand, Mareike Maass, Anatoliy G Grebenyuk, Alexander A Golub, Bernd M Smarsly\",\"doi\":\"10.1002/cphc.202400936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silica materials represent a promising material for the application in heterogeneous organocatalysis due to their readily modifiable surface and chemical inertness. To achieve high catalyst loadings, usually, porous carriers with high surface areas are used, such as special silica monoliths or spherical particles for backed bed reactors. Yet, their synthesis is elaborate, and thus less complex and cheaper alternatives are of interest, especially considering scaling up. In this work, two commercial silica materials functionalized with the organocatalyst 4-(dimethylamino)pyridine (DMAP) were used in catalytic acylation reactions: a mesoporous silica gel (Siliabond®-DMAP) and non-porous silica nanoparticles (Ludox®). Both were successfully used in the acylation of phenylethanol, but the latter required significantly longer reaction times, presumably due to mass-transfer limitations as a consequence of substantial agglomeration that limits the accessible amount of catalyst. Furthermore, it was shown that the influence of the linker molecule is negligible, since both reaction yields and the activation energy remain largely similar. As main result the commercial material Siliabond-DMAP, despite the non-uniform particles, exhibited significant yield in a flow setup, thus demonstrating the potential as support material for application in heterogeneous organocatalysis.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400936\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400936\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400936","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Commercial silica materials functionalized with a versatile organocatalyst for the catalysis of acylation reactions in liquid media.
Silica materials represent a promising material for the application in heterogeneous organocatalysis due to their readily modifiable surface and chemical inertness. To achieve high catalyst loadings, usually, porous carriers with high surface areas are used, such as special silica monoliths or spherical particles for backed bed reactors. Yet, their synthesis is elaborate, and thus less complex and cheaper alternatives are of interest, especially considering scaling up. In this work, two commercial silica materials functionalized with the organocatalyst 4-(dimethylamino)pyridine (DMAP) were used in catalytic acylation reactions: a mesoporous silica gel (Siliabond®-DMAP) and non-porous silica nanoparticles (Ludox®). Both were successfully used in the acylation of phenylethanol, but the latter required significantly longer reaction times, presumably due to mass-transfer limitations as a consequence of substantial agglomeration that limits the accessible amount of catalyst. Furthermore, it was shown that the influence of the linker molecule is negligible, since both reaction yields and the activation energy remain largely similar. As main result the commercial material Siliabond-DMAP, despite the non-uniform particles, exhibited significant yield in a flow setup, thus demonstrating the potential as support material for application in heterogeneous organocatalysis.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.