综合生理指标和转录组分析揭示了大豆花蕾对高温胁迫的响应。

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2024-11-20 DOI:10.1186/s12870-024-05798-8
Jiajia Li, Meiyan Wu, Haoran Chen, Wei Liao, Shu Yao, Ying Wei, Heng Wang, Qun Long, Xiaoyu Hu, Wei Wang, Guoji Wang, Lijuan Qiu, Xiaobo Wang
{"title":"综合生理指标和转录组分析揭示了大豆花蕾对高温胁迫的响应。","authors":"Jiajia Li, Meiyan Wu, Haoran Chen, Wei Liao, Shu Yao, Ying Wei, Heng Wang, Qun Long, Xiaoyu Hu, Wei Wang, Guoji Wang, Lijuan Qiu, Xiaobo Wang","doi":"10.1186/s12870-024-05798-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Under global warming, high temperature (HT) has become a major meteorological factor affecting soybean production. To explore the candidate genes and regulatory mechanism of the soybean bud response to HT stress, previously identified as HT-tolerant ('Handou14'; HD14) and HT-sensitive ('Jiadou36'; JD36) were treated for 5 days in an artificial climate incubator either with HT (43 °C (day)/ 33 °C (night), 16 h light/8 h darkness) or the non-stress growth condition (25 °C, 16 h light/8 h darkness) as the control at the bud stage were used as experimental materials in this study. After HT treatment, changes in physiological indicators including hypocotyl length, enzyme activity and hormone content were detected; at the same time, the cotyledons, hypocotyls, and main roots were collected for transcriptome sequencing analysis. Analyzing the mechanisms of HT stress response in the bud stage of HD14 and JD36 at physiological and transcription levels.</p><p><strong>Results: </strong>Analysis of physiological indicator showed that the activities of superoxide dismutase (SOD) were significantly increased 47.4% and 41.2% in the cotyledon of HD14 and the main root of JD36, and the contents of peroxidase (POD) were significantly increased 61.5% and 125% in the hypocotyl of HD14 and JD36; the contents of malonaldehyde (MDA) were significantly increased 44.8% and 22.2% in the main root of HD14 and JD36 after HT treatment. The content of abscisic acid (ABA) were significantly increased 1.9 fold and 1.2 fold in the root of HD14 and JD36 in response to HT treatment, whereas the content of gibberellin (GA) were decreased 2.2 fold and 1.3 fold in the cotyledon and root, and increased 1.6 fold in the hypocotyl in HD14 (P < 0.05). Thus, higher SOD and POD activities, higher ABA content, and a smaller increase in MDA content may improve tolerance to HT stress. The HT-tolerant cultivar may have stronger GA signal transduction in the hypocotyl to combat the negative effects of HT. RNA-sequencing was performed to analyze the differential expression of genes in buds of the two cultivars under the HT treatment and control condition. In total, 3,633, 1,964, 9,934, and 3,036 differentially expressed genes (DEGs) were identified in the CH (control group of HD14) vs. TH (HT-treatment group of HD14), CJ (control group of JD36) vs. TJ (HT-treatment group of JD36), TJ vs. TH, and CJ vs. CH comparison groups, respectively. Bioinformatic analysis revealed that most DEGs were mainly involved in metabolic processes, catalytic activity, carbohydrate, energy transduction, and signaling pathways. The results of qRT-PCR validation (86.67%) and changes in physiological indicators were consistent with the RNA-sequencing data. Five DEGs were selected as candidate genes in the response to HT stress at the bud stage.</p><p><strong>Conclusion: </strong>In summary, soybean cells are protected from oxidative damage by an increase in antioxidant enzyme activities and accumulation of hormone content under HT stress. Concomitantly, changes in the expression of crucial genes and signal transmission processes are induced, thus initiating adaptive and protective mechanisms. This study provides a theoretical basis for clarification of the physiological and molecular mechanisms in the response to HT stress of soybean bud.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"24 1","pages":"1102"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated physiological indicator and transcriptomic analysis reveals the response of soybean buds to high-temperature stress.\",\"authors\":\"Jiajia Li, Meiyan Wu, Haoran Chen, Wei Liao, Shu Yao, Ying Wei, Heng Wang, Qun Long, Xiaoyu Hu, Wei Wang, Guoji Wang, Lijuan Qiu, Xiaobo Wang\",\"doi\":\"10.1186/s12870-024-05798-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Under global warming, high temperature (HT) has become a major meteorological factor affecting soybean production. To explore the candidate genes and regulatory mechanism of the soybean bud response to HT stress, previously identified as HT-tolerant ('Handou14'; HD14) and HT-sensitive ('Jiadou36'; JD36) were treated for 5 days in an artificial climate incubator either with HT (43 °C (day)/ 33 °C (night), 16 h light/8 h darkness) or the non-stress growth condition (25 °C, 16 h light/8 h darkness) as the control at the bud stage were used as experimental materials in this study. After HT treatment, changes in physiological indicators including hypocotyl length, enzyme activity and hormone content were detected; at the same time, the cotyledons, hypocotyls, and main roots were collected for transcriptome sequencing analysis. Analyzing the mechanisms of HT stress response in the bud stage of HD14 and JD36 at physiological and transcription levels.</p><p><strong>Results: </strong>Analysis of physiological indicator showed that the activities of superoxide dismutase (SOD) were significantly increased 47.4% and 41.2% in the cotyledon of HD14 and the main root of JD36, and the contents of peroxidase (POD) were significantly increased 61.5% and 125% in the hypocotyl of HD14 and JD36; the contents of malonaldehyde (MDA) were significantly increased 44.8% and 22.2% in the main root of HD14 and JD36 after HT treatment. The content of abscisic acid (ABA) were significantly increased 1.9 fold and 1.2 fold in the root of HD14 and JD36 in response to HT treatment, whereas the content of gibberellin (GA) were decreased 2.2 fold and 1.3 fold in the cotyledon and root, and increased 1.6 fold in the hypocotyl in HD14 (P < 0.05). Thus, higher SOD and POD activities, higher ABA content, and a smaller increase in MDA content may improve tolerance to HT stress. The HT-tolerant cultivar may have stronger GA signal transduction in the hypocotyl to combat the negative effects of HT. RNA-sequencing was performed to analyze the differential expression of genes in buds of the two cultivars under the HT treatment and control condition. In total, 3,633, 1,964, 9,934, and 3,036 differentially expressed genes (DEGs) were identified in the CH (control group of HD14) vs. TH (HT-treatment group of HD14), CJ (control group of JD36) vs. TJ (HT-treatment group of JD36), TJ vs. TH, and CJ vs. CH comparison groups, respectively. Bioinformatic analysis revealed that most DEGs were mainly involved in metabolic processes, catalytic activity, carbohydrate, energy transduction, and signaling pathways. The results of qRT-PCR validation (86.67%) and changes in physiological indicators were consistent with the RNA-sequencing data. Five DEGs were selected as candidate genes in the response to HT stress at the bud stage.</p><p><strong>Conclusion: </strong>In summary, soybean cells are protected from oxidative damage by an increase in antioxidant enzyme activities and accumulation of hormone content under HT stress. Concomitantly, changes in the expression of crucial genes and signal transmission processes are induced, thus initiating adaptive and protective mechanisms. This study provides a theoretical basis for clarification of the physiological and molecular mechanisms in the response to HT stress of soybean bud.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"24 1\",\"pages\":\"1102\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-024-05798-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05798-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:在全球气候变暖的情况下,高温(HT)已成为影响大豆产量的主要气象因素。为探索大豆芽对高温胁迫响应的候选基因及调控机制,本研究以大豆芽期为实验材料,在人工气候培养箱中分别处理耐高温(43 °C(昼)/ 33 °C(夜),16 小时光照/8 小时黑暗)和非胁迫生长条件(25 °C,16 小时光照/8 小时黑暗)5 天。HT处理后,检测下胚轴长度、酶活性和激素含量等生理指标的变化,同时采集子叶、下胚轴和主根进行转录组测序分析。从生理和转录水平分析HD14和JD36芽期HT胁迫响应机制:生理指标分析表明,HD14和JD36子叶和主根经HT处理后,超氧化物歧化酶(SOD)活性分别显著增加47.4%和41.2%,过氧化物酶(POD)含量分别显著增加61.5%和125%;HD14和JD36主根经HT处理后,丙二醛(MDA)含量分别显著增加44.8%和22.2%。脱落酸(ABA)含量在HT处理后的HD14和JD36根中分别显著增加了1.9倍和1.2倍,而赤霉素(GA)含量在HD14的子叶和根中分别减少了2.2倍和1.3倍,在下胚轴中增加了1.6倍(P结论):总之,在 HT 胁迫下,大豆细胞通过提高抗氧化酶活性和积累激素含量来防止氧化损伤。同时,关键基因的表达和信号传递过程也被诱导发生变化,从而启动了适应和保护机制。这项研究为阐明大豆花蕾对 HT 胁迫响应的生理和分子机制提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An integrated physiological indicator and transcriptomic analysis reveals the response of soybean buds to high-temperature stress.

Background: Under global warming, high temperature (HT) has become a major meteorological factor affecting soybean production. To explore the candidate genes and regulatory mechanism of the soybean bud response to HT stress, previously identified as HT-tolerant ('Handou14'; HD14) and HT-sensitive ('Jiadou36'; JD36) were treated for 5 days in an artificial climate incubator either with HT (43 °C (day)/ 33 °C (night), 16 h light/8 h darkness) or the non-stress growth condition (25 °C, 16 h light/8 h darkness) as the control at the bud stage were used as experimental materials in this study. After HT treatment, changes in physiological indicators including hypocotyl length, enzyme activity and hormone content were detected; at the same time, the cotyledons, hypocotyls, and main roots were collected for transcriptome sequencing analysis. Analyzing the mechanisms of HT stress response in the bud stage of HD14 and JD36 at physiological and transcription levels.

Results: Analysis of physiological indicator showed that the activities of superoxide dismutase (SOD) were significantly increased 47.4% and 41.2% in the cotyledon of HD14 and the main root of JD36, and the contents of peroxidase (POD) were significantly increased 61.5% and 125% in the hypocotyl of HD14 and JD36; the contents of malonaldehyde (MDA) were significantly increased 44.8% and 22.2% in the main root of HD14 and JD36 after HT treatment. The content of abscisic acid (ABA) were significantly increased 1.9 fold and 1.2 fold in the root of HD14 and JD36 in response to HT treatment, whereas the content of gibberellin (GA) were decreased 2.2 fold and 1.3 fold in the cotyledon and root, and increased 1.6 fold in the hypocotyl in HD14 (P < 0.05). Thus, higher SOD and POD activities, higher ABA content, and a smaller increase in MDA content may improve tolerance to HT stress. The HT-tolerant cultivar may have stronger GA signal transduction in the hypocotyl to combat the negative effects of HT. RNA-sequencing was performed to analyze the differential expression of genes in buds of the two cultivars under the HT treatment and control condition. In total, 3,633, 1,964, 9,934, and 3,036 differentially expressed genes (DEGs) were identified in the CH (control group of HD14) vs. TH (HT-treatment group of HD14), CJ (control group of JD36) vs. TJ (HT-treatment group of JD36), TJ vs. TH, and CJ vs. CH comparison groups, respectively. Bioinformatic analysis revealed that most DEGs were mainly involved in metabolic processes, catalytic activity, carbohydrate, energy transduction, and signaling pathways. The results of qRT-PCR validation (86.67%) and changes in physiological indicators were consistent with the RNA-sequencing data. Five DEGs were selected as candidate genes in the response to HT stress at the bud stage.

Conclusion: In summary, soybean cells are protected from oxidative damage by an increase in antioxidant enzyme activities and accumulation of hormone content under HT stress. Concomitantly, changes in the expression of crucial genes and signal transmission processes are induced, thus initiating adaptive and protective mechanisms. This study provides a theoretical basis for clarification of the physiological and molecular mechanisms in the response to HT stress of soybean bud.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Comprehensive comparative analysis and development of molecular markers for Lasianthus species based on complete chloroplast genome sequences Lamiaceae family-derived endophytic fungi: induced tolerance to drought stress in Thymus vulgaris plants. Molecular mechanisms of flowering time differentiation revealed by transcriptomic sequencing and de novo analysis in Chinese invasive populations of Ambrosia artemisiifolia. Woody species composition, structure and regeneration status of Alka forest Beyeda District, North Gondar Zone, Amhara Region, Northern Ethiopia. An integrated physiological indicator and transcriptomic analysis reveals the response of soybean buds to high-temperature stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1