CTNND1 影响人类胚胎植入过程中滋养细胞的增殖和分化。

IF 3.1 2区 生物学 Q2 REPRODUCTIVE BIOLOGY Biology of Reproduction Pub Date : 2024-11-19 DOI:10.1093/biolre/ioae163
Jiaying Qin, Bo Lv, Yao Yao, Xuan Han, Zhigang Xue, Chao-Po Lin, Jinfeng Xue, Yazhong Ji
{"title":"CTNND1 影响人类胚胎植入过程中滋养细胞的增殖和分化。","authors":"Jiaying Qin, Bo Lv, Yao Yao, Xuan Han, Zhigang Xue, Chao-Po Lin, Jinfeng Xue, Yazhong Ji","doi":"10.1093/biolre/ioae163","DOIUrl":null,"url":null,"abstract":"<p><p>The placenta, serving as the crucial link between maternal and infant, plays a pivotal role in maintaining a healthy pregnancy. Placental dysplasia can lead to various complications, underscoring the importance of understanding trophoblast lineage development. During peri-implantation, the trophectoderm (TE) undergoes differentiation into cytotrophoblast (CTB), syncytiotrophoblast (STB), and extravillous trophoblast (EVT). However, the specification and regulation of human trophoblast lineage during embryo implantation, particularly in the peri-implantation phase, remain to be explored. In this study, we employed a co-culture model of human endometrial cells and native embryos and analyzed the single-cell transcriptomic data of 491 human embryonic trophoblasts during E6 to E10 to identify the key regulatory factors and the lineage differentiation process during peri-implantation. Our data identified four cell subpopulations during the implantation, including a specific transitional state toward the differentiation in which the CTNND1, one crucial component of Wnt signaling pathway activated by cadherins, acted as a crucial factor. Knockdown of CTNND1 impacted the proliferative capacity of trophoblast stem cells (hTSCs), leading to early EVT-like differentiation. Intriguingly, ablation of CTNND1 compromised the terminal differentiation of hTSCs toward both STB or EVT in vitro. Those observations identified the role of cell adhesion-mediated Wnt signaling in hTSC self-renewal, as well as suggest that this signaling pathway controls a transitional state that is crucial for trophoblast lineage specification. These findings contribute valuable insights into trophoblast lineage dynamics and offer a reference for research on placental-related diseases.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CTNND1 affects trophoblast proliferation and specification during human embryo implantation.\",\"authors\":\"Jiaying Qin, Bo Lv, Yao Yao, Xuan Han, Zhigang Xue, Chao-Po Lin, Jinfeng Xue, Yazhong Ji\",\"doi\":\"10.1093/biolre/ioae163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The placenta, serving as the crucial link between maternal and infant, plays a pivotal role in maintaining a healthy pregnancy. Placental dysplasia can lead to various complications, underscoring the importance of understanding trophoblast lineage development. During peri-implantation, the trophectoderm (TE) undergoes differentiation into cytotrophoblast (CTB), syncytiotrophoblast (STB), and extravillous trophoblast (EVT). However, the specification and regulation of human trophoblast lineage during embryo implantation, particularly in the peri-implantation phase, remain to be explored. In this study, we employed a co-culture model of human endometrial cells and native embryos and analyzed the single-cell transcriptomic data of 491 human embryonic trophoblasts during E6 to E10 to identify the key regulatory factors and the lineage differentiation process during peri-implantation. Our data identified four cell subpopulations during the implantation, including a specific transitional state toward the differentiation in which the CTNND1, one crucial component of Wnt signaling pathway activated by cadherins, acted as a crucial factor. Knockdown of CTNND1 impacted the proliferative capacity of trophoblast stem cells (hTSCs), leading to early EVT-like differentiation. Intriguingly, ablation of CTNND1 compromised the terminal differentiation of hTSCs toward both STB or EVT in vitro. Those observations identified the role of cell adhesion-mediated Wnt signaling in hTSC self-renewal, as well as suggest that this signaling pathway controls a transitional state that is crucial for trophoblast lineage specification. These findings contribute valuable insights into trophoblast lineage dynamics and offer a reference for research on placental-related diseases.</p>\",\"PeriodicalId\":8965,\"journal\":{\"name\":\"Biology of Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biolre/ioae163\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioae163","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胎盘是母婴之间的重要纽带,在维持妊娠健康方面起着举足轻重的作用。胎盘发育不良可导致各种并发症,这凸显了了解滋养层细胞系发育的重要性。在近着床期,滋养层外胚层(TE)会分化为细胞滋养层(CTB)、合体滋养层(STB)和苗外滋养层(EVT)。然而,胚胎植入过程中,尤其是在植入前阶段,人类滋养层细胞系的分化和调控仍有待探索。在这项研究中,我们采用了人类子宫内膜细胞和原生胚胎的共培养模型,分析了 491 个人类胚胎滋养层细胞在 E6 至 E10 期间的单细胞转录组数据,以确定围植入期的关键调控因子和品系分化过程。我们的数据确定了着床过程中的四个细胞亚群,其中包括一个向分化过渡的特定状态,CTNND1是由粘连蛋白激活的Wnt信号通路的一个关键成分。敲除CTNND1会影响滋养层干细胞(hTSCs)的增殖能力,导致早期EVT样分化。耐人寻味的是,消减CTNND1会影响体外hTSC向STB或EVT的终末分化。这些观察结果确定了细胞粘附介导的Wnt信号在hTSC自我更新中的作用,并表明这种信号通路控制着对滋养层细胞系规范至关重要的过渡状态。这些发现有助于深入了解滋养层细胞系的动态变化,并为胎盘相关疾病的研究提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CTNND1 affects trophoblast proliferation and specification during human embryo implantation.

The placenta, serving as the crucial link between maternal and infant, plays a pivotal role in maintaining a healthy pregnancy. Placental dysplasia can lead to various complications, underscoring the importance of understanding trophoblast lineage development. During peri-implantation, the trophectoderm (TE) undergoes differentiation into cytotrophoblast (CTB), syncytiotrophoblast (STB), and extravillous trophoblast (EVT). However, the specification and regulation of human trophoblast lineage during embryo implantation, particularly in the peri-implantation phase, remain to be explored. In this study, we employed a co-culture model of human endometrial cells and native embryos and analyzed the single-cell transcriptomic data of 491 human embryonic trophoblasts during E6 to E10 to identify the key regulatory factors and the lineage differentiation process during peri-implantation. Our data identified four cell subpopulations during the implantation, including a specific transitional state toward the differentiation in which the CTNND1, one crucial component of Wnt signaling pathway activated by cadherins, acted as a crucial factor. Knockdown of CTNND1 impacted the proliferative capacity of trophoblast stem cells (hTSCs), leading to early EVT-like differentiation. Intriguingly, ablation of CTNND1 compromised the terminal differentiation of hTSCs toward both STB or EVT in vitro. Those observations identified the role of cell adhesion-mediated Wnt signaling in hTSC self-renewal, as well as suggest that this signaling pathway controls a transitional state that is crucial for trophoblast lineage specification. These findings contribute valuable insights into trophoblast lineage dynamics and offer a reference for research on placental-related diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology of Reproduction
Biology of Reproduction 生物-生殖生物学
CiteScore
6.30
自引率
5.60%
发文量
214
审稿时长
1 months
期刊介绍: Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.
期刊最新文献
Pyrroloquinoline-quinone supplementation restores ovarian function and oocyte quality in a mouse model of advanced maternal age. Attenuation of Ampullary Anoctamin 1 by the Peritoneal Fluid in Rhesus Macaques with Spontaneous Endometriosis. CSPG4 involvement in endometrial decidualization contributes to the pathogenesis of preeclampsia. CTNND1 affects trophoblast proliferation and specification during human embryo implantation. Developmental programming: Preconceptional and gestational exposure of sheep to biosolids on offspring ovarian dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1