Tanveer Ahmad Pandith, Shakeel Simnani, Rayees Ahmad, Krishna Pal Singh, Jeeban Prasad Gewali
{"title":"印度北克什米尔帕坦地区不同年龄组人群水中氡的定量以及通过吸入和摄入进行的剂量估算。","authors":"Tanveer Ahmad Pandith, Shakeel Simnani, Rayees Ahmad, Krishna Pal Singh, Jeeban Prasad Gewali","doi":"10.1007/s10653-024-02302-x","DOIUrl":null,"url":null,"abstract":"<p><p>Human survival hinges on access to water, which provides vital necessities. It is crucial to secure reliable, affordable, and uncontaminated water to maintain health and sustain life. For the potential impact of radioactive water pollution on human well-being, a scintillation-based smart RnDuo detector was employed in the Pattan region of North Kashmir Baramulla to quantify radon levels in diverse underground water. The dose contribution to various organs through inhalation and ingestion pathways has been analyzed. The study assesses the levels of radon in water, which varied from 19.88 to 74.37 Bq/L with an average of 37.65 Bq/L. All of the values were higher than the United States Environmental Protection Agency(USEPA) suggested guideline of 11 Bq/L but lower than the 100 Bq/L prescribed by the World Health Organization (WHO). The age group-wise inhalation and ingestion doses are higher than the 100 μSv/y recommended by WHO but within the prescribed range of 3-10 mSv/y as suggested by the International Commission on Radiological Protection (ICRP). Doses to various organs (lungs and stomach) are also calculated in the present study. The results of the present investigation will help to enhance the quality of the water and guide future epidemiological studies.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"522"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radon quantification in water and dose estimation via inhalation and ingestion across age groups in the Pattan region of North Kashmir, India.\",\"authors\":\"Tanveer Ahmad Pandith, Shakeel Simnani, Rayees Ahmad, Krishna Pal Singh, Jeeban Prasad Gewali\",\"doi\":\"10.1007/s10653-024-02302-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human survival hinges on access to water, which provides vital necessities. It is crucial to secure reliable, affordable, and uncontaminated water to maintain health and sustain life. For the potential impact of radioactive water pollution on human well-being, a scintillation-based smart RnDuo detector was employed in the Pattan region of North Kashmir Baramulla to quantify radon levels in diverse underground water. The dose contribution to various organs through inhalation and ingestion pathways has been analyzed. The study assesses the levels of radon in water, which varied from 19.88 to 74.37 Bq/L with an average of 37.65 Bq/L. All of the values were higher than the United States Environmental Protection Agency(USEPA) suggested guideline of 11 Bq/L but lower than the 100 Bq/L prescribed by the World Health Organization (WHO). The age group-wise inhalation and ingestion doses are higher than the 100 μSv/y recommended by WHO but within the prescribed range of 3-10 mSv/y as suggested by the International Commission on Radiological Protection (ICRP). Doses to various organs (lungs and stomach) are also calculated in the present study. The results of the present investigation will help to enhance the quality of the water and guide future epidemiological studies.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"46 12\",\"pages\":\"522\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02302-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02302-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Radon quantification in water and dose estimation via inhalation and ingestion across age groups in the Pattan region of North Kashmir, India.
Human survival hinges on access to water, which provides vital necessities. It is crucial to secure reliable, affordable, and uncontaminated water to maintain health and sustain life. For the potential impact of radioactive water pollution on human well-being, a scintillation-based smart RnDuo detector was employed in the Pattan region of North Kashmir Baramulla to quantify radon levels in diverse underground water. The dose contribution to various organs through inhalation and ingestion pathways has been analyzed. The study assesses the levels of radon in water, which varied from 19.88 to 74.37 Bq/L with an average of 37.65 Bq/L. All of the values were higher than the United States Environmental Protection Agency(USEPA) suggested guideline of 11 Bq/L but lower than the 100 Bq/L prescribed by the World Health Organization (WHO). The age group-wise inhalation and ingestion doses are higher than the 100 μSv/y recommended by WHO but within the prescribed range of 3-10 mSv/y as suggested by the International Commission on Radiological Protection (ICRP). Doses to various organs (lungs and stomach) are also calculated in the present study. The results of the present investigation will help to enhance the quality of the water and guide future epidemiological studies.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.