{"title":"用于短期心率变异性分析的修正多尺度仁义分布熵。","authors":"Manhong Shi, Yinuo Shi, Yuxin Lin, Xue Qi","doi":"10.1186/s12911-024-02763-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multiscale sample entropy (MSE) is a prevalent complexity metric to characterize a time series and has been extensively applied to the physiological signal analysis. However, for a short-term time series, the likelihood of identifying comparable subsequences decreases, leading to higher variability in the Sample Entropy (SampEn) calculation. Additionally, as the scale factor increases in the MSE calculation, the coarse-graining process further shortens the time series. Consequently, each newly generated time series at a larger scale consists of fewer data points, potentially resulting in unreliable or undefined entropy values, particularly at higher scales. To overcome the shortcoming, a modified multiscale Renyi distribution entropy (MMRDis) was proposed in our present work.</p><p><strong>Methods: </strong>The MMRDis method uses a moving-averaging procedure to acquire a family of time series, each of which quantify the dynamic behaviors of the short-term time series over the multiple temporal scales. Then, MMRDis is constructed for the original and the coarse-grained time series.</p><p><strong>Results: </strong>The MMRDis method demonstrated superior computational stability on simulated Gaussian white and 1/f noise time series, effectively avoiding undefined measurements in short-term time series. Analysis of short-term heart rate variability (HRV) signals from healthy elderly individuals, healthy young people, and subjects with congestive heart failure and atrial fibrillation revealed that MMRDis complexity measurement values decreased with aging and disease. Additionally, MMRDis exhibited better distinction capability for short-term HRV physiological/pathological signals compared to several recently proposed complexity metrics.</p><p><strong>Conclusions: </strong>MMRDis was a promising measurement for screening cardiovascular condition within a short time.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"24 1","pages":"346"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577734/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modified multiscale Renyi distribution entropy for short-term heart rate variability analysis.\",\"authors\":\"Manhong Shi, Yinuo Shi, Yuxin Lin, Xue Qi\",\"doi\":\"10.1186/s12911-024-02763-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Multiscale sample entropy (MSE) is a prevalent complexity metric to characterize a time series and has been extensively applied to the physiological signal analysis. However, for a short-term time series, the likelihood of identifying comparable subsequences decreases, leading to higher variability in the Sample Entropy (SampEn) calculation. Additionally, as the scale factor increases in the MSE calculation, the coarse-graining process further shortens the time series. Consequently, each newly generated time series at a larger scale consists of fewer data points, potentially resulting in unreliable or undefined entropy values, particularly at higher scales. To overcome the shortcoming, a modified multiscale Renyi distribution entropy (MMRDis) was proposed in our present work.</p><p><strong>Methods: </strong>The MMRDis method uses a moving-averaging procedure to acquire a family of time series, each of which quantify the dynamic behaviors of the short-term time series over the multiple temporal scales. Then, MMRDis is constructed for the original and the coarse-grained time series.</p><p><strong>Results: </strong>The MMRDis method demonstrated superior computational stability on simulated Gaussian white and 1/f noise time series, effectively avoiding undefined measurements in short-term time series. Analysis of short-term heart rate variability (HRV) signals from healthy elderly individuals, healthy young people, and subjects with congestive heart failure and atrial fibrillation revealed that MMRDis complexity measurement values decreased with aging and disease. Additionally, MMRDis exhibited better distinction capability for short-term HRV physiological/pathological signals compared to several recently proposed complexity metrics.</p><p><strong>Conclusions: </strong>MMRDis was a promising measurement for screening cardiovascular condition within a short time.</p>\",\"PeriodicalId\":9340,\"journal\":{\"name\":\"BMC Medical Informatics and Decision Making\",\"volume\":\"24 1\",\"pages\":\"346\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577734/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Informatics and Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12911-024-02763-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02763-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Modified multiscale Renyi distribution entropy for short-term heart rate variability analysis.
Background: Multiscale sample entropy (MSE) is a prevalent complexity metric to characterize a time series and has been extensively applied to the physiological signal analysis. However, for a short-term time series, the likelihood of identifying comparable subsequences decreases, leading to higher variability in the Sample Entropy (SampEn) calculation. Additionally, as the scale factor increases in the MSE calculation, the coarse-graining process further shortens the time series. Consequently, each newly generated time series at a larger scale consists of fewer data points, potentially resulting in unreliable or undefined entropy values, particularly at higher scales. To overcome the shortcoming, a modified multiscale Renyi distribution entropy (MMRDis) was proposed in our present work.
Methods: The MMRDis method uses a moving-averaging procedure to acquire a family of time series, each of which quantify the dynamic behaviors of the short-term time series over the multiple temporal scales. Then, MMRDis is constructed for the original and the coarse-grained time series.
Results: The MMRDis method demonstrated superior computational stability on simulated Gaussian white and 1/f noise time series, effectively avoiding undefined measurements in short-term time series. Analysis of short-term heart rate variability (HRV) signals from healthy elderly individuals, healthy young people, and subjects with congestive heart failure and atrial fibrillation revealed that MMRDis complexity measurement values decreased with aging and disease. Additionally, MMRDis exhibited better distinction capability for short-term HRV physiological/pathological signals compared to several recently proposed complexity metrics.
Conclusions: MMRDis was a promising measurement for screening cardiovascular condition within a short time.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.