评估市售放射性变色膜作为辅助剂量计用于现场低光子当量辐射剂量(≤50 mSv)快速监测的情况。

IF 1 4区 医学 Q4 ENVIRONMENTAL SCIENCES Health physics Pub Date : 2024-11-20 DOI:10.1097/HP.0000000000001903
Nicky Nivi, Helen Moise, Ana Pejović-Milić
{"title":"评估市售放射性变色膜作为辅助剂量计用于现场低光子当量辐射剂量(≤50 mSv)快速监测的情况。","authors":"Nicky Nivi, Helen Moise, Ana Pejović-Milić","doi":"10.1097/HP.0000000000001903","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>This work investigates the low photon radiation dose (≤50 mSv) response of commercially available radiochromic films as a potential field dosimeter that could be used by the Canadian Armed Forces to complement their existing personal radiation dosimeters. The films were exposed to various photon energies from x-ray devices and radioisotopes (cesium-137, cobalt-60, and americium-241), and their radiation signal was read using three methods: net optical density, UV/visible spectroscopy, and Fourier transform infrared spectroscopy. A complimentary film dosimeter for field usage should, for military use, display a visual color change and detect doses ≤50 mSv. Given the film's radiochromic properties, it was determined that the net optical density method was the most optimal read-out method, which ascertained a minimum detection dose limit of 4.5 mSv under exposure to a clinical orthovoltage operated at 100 kVp. The film presented an overall linear relationship between net optical density and radiation dose; however, they also portrayed a photon energy-dependent response between 0-100 mSv. Overall, the radiochromic films presented a real-time visual dose signal that could be interpreted rapidly in a mobile laboratory and possessed the ability to detect photon doses ≤50 mSv below the vendor's recommended limits, making it a suitable option as a complementary, disposable, military dosimetric tool. Future work includes the investigation of the film's response under multi- and unknown source environments and environmental-dependent factors such as UV/sunlight exposure and extreme temperatures.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring.\",\"authors\":\"Nicky Nivi, Helen Moise, Ana Pejović-Milić\",\"doi\":\"10.1097/HP.0000000000001903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>This work investigates the low photon radiation dose (≤50 mSv) response of commercially available radiochromic films as a potential field dosimeter that could be used by the Canadian Armed Forces to complement their existing personal radiation dosimeters. The films were exposed to various photon energies from x-ray devices and radioisotopes (cesium-137, cobalt-60, and americium-241), and their radiation signal was read using three methods: net optical density, UV/visible spectroscopy, and Fourier transform infrared spectroscopy. A complimentary film dosimeter for field usage should, for military use, display a visual color change and detect doses ≤50 mSv. Given the film's radiochromic properties, it was determined that the net optical density method was the most optimal read-out method, which ascertained a minimum detection dose limit of 4.5 mSv under exposure to a clinical orthovoltage operated at 100 kVp. The film presented an overall linear relationship between net optical density and radiation dose; however, they also portrayed a photon energy-dependent response between 0-100 mSv. Overall, the radiochromic films presented a real-time visual dose signal that could be interpreted rapidly in a mobile laboratory and possessed the ability to detect photon doses ≤50 mSv below the vendor's recommended limits, making it a suitable option as a complementary, disposable, military dosimetric tool. Future work includes the investigation of the film's response under multi- and unknown source environments and environmental-dependent factors such as UV/sunlight exposure and extreme temperatures.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001903\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001903","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:这项工作研究了市售的放射性变色胶片对低光子辐射剂量(≤50 mSv)的响应,作为一种潜在的野外剂量计,加拿大武装部队可将其用于补充现有的个人辐射剂量计。这些胶片暴露在来自 X 射线设备和放射性同位素(铯-137、钴-60 和镅-241)的各种光子能量下,并使用三种方法读取其辐射信号:净光密度、紫外线/可见光光谱和傅立叶变换红外光谱。对于军事用途而言,野外使用的免费胶片剂量计应能显示视觉颜色变化,并能检测到≤50 mSv 的剂量。考虑到胶片的放射性变色特性,确定净光密度法是最理想的读出方法,在 100 kVp 的临床正交电压下,最低检测剂量限制为 4.5 mSv。胶片的净光密度与辐射剂量之间总体上呈线性关系,但在 0-100 mSv 之间也呈现出光子能量依赖性响应。总之,放射性变色薄膜能提供实时视觉剂量信号,可在移动实验室中快速解读,并能检测到低于供应商建议限值的 50 mSv 以下的光子剂量,因此适合作为一次性军用剂量测定工具的补充选择。未来的工作包括研究薄膜在多种和未知来源环境下的反应,以及紫外线/阳光照射和极端温度等环境相关因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring.

Abstract: This work investigates the low photon radiation dose (≤50 mSv) response of commercially available radiochromic films as a potential field dosimeter that could be used by the Canadian Armed Forces to complement their existing personal radiation dosimeters. The films were exposed to various photon energies from x-ray devices and radioisotopes (cesium-137, cobalt-60, and americium-241), and their radiation signal was read using three methods: net optical density, UV/visible spectroscopy, and Fourier transform infrared spectroscopy. A complimentary film dosimeter for field usage should, for military use, display a visual color change and detect doses ≤50 mSv. Given the film's radiochromic properties, it was determined that the net optical density method was the most optimal read-out method, which ascertained a minimum detection dose limit of 4.5 mSv under exposure to a clinical orthovoltage operated at 100 kVp. The film presented an overall linear relationship between net optical density and radiation dose; however, they also portrayed a photon energy-dependent response between 0-100 mSv. Overall, the radiochromic films presented a real-time visual dose signal that could be interpreted rapidly in a mobile laboratory and possessed the ability to detect photon doses ≤50 mSv below the vendor's recommended limits, making it a suitable option as a complementary, disposable, military dosimetric tool. Future work includes the investigation of the film's response under multi- and unknown source environments and environmental-dependent factors such as UV/sunlight exposure and extreme temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health physics
Health physics 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.20
自引率
0.00%
发文量
324
审稿时长
3-8 weeks
期刊介绍: Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.
期刊最新文献
Design of a Low-cost Radiation Weather Station. HEALTH PHYSICS SOCIETY . 2025 AFFILIATE MEMBERS. Policy Surveillance Methods Applied to NORM and TENORM Regulation in the Southeast United States. TENORM Regulation in the United States of America post-West Virginia vs. EPA. The Future of Radiation Protection Professionals: Spotlight on Students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1