揭示长非编码 RNA 在鸡对高致病性禽流感 H5N1 感染的免疫反应中的作用。

IF 3.8 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Poultry Science Pub Date : 2024-11-06 DOI:10.1016/j.psj.2024.104524
Thi Hao Vu, Chaeeun Kim, Anh Duc Truong, Jun-Mo Kim, Hyun S Lillehoj, Yeong Ho Hong
{"title":"揭示长非编码 RNA 在鸡对高致病性禽流感 H5N1 感染的免疫反应中的作用。","authors":"Thi Hao Vu, Chaeeun Kim, Anh Duc Truong, Jun-Mo Kim, Hyun S Lillehoj, Yeong Ho Hong","doi":"10.1016/j.psj.2024.104524","DOIUrl":null,"url":null,"abstract":"<p><p>Avian influenza viruses (AIVs) pose a significant threat to global poultry production, necessitating effective control strategies to mitigate economic losses and ensure animal welfare. Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of immune responses, yet their roles in AIV-infected chickens remain poorly understood. This study aimed to investigate the expression profiles of lncRNAs and their targets in Vietnamese Ri chickens infected with the highly pathogenic AIV (HPAIV) H5N1. Through RNA sequencing, we identified novel lncRNAs and analyzed differentially expressed (DE) transcripts at 1 and 3 days post-infection (dpi) in chicken lung tissue. Our results revealed a higher number of DE lncRNAs and mRNAs at 1 dpi and 3 dpi, respectively, compared to control, with resistant chickens exhibiting a notably stronger immune response than susceptible chickens at 3 dpi. Functional analysis implicated these lncRNAs in immune-related pathways crucial for host responses to H5N1 viral infection. Furthermore, we identified lncRNA-mRNA interactions associated with antiviral responses and immune function. Notably, several genes involved in antiviral resistance and immune responses showed higher expression in resistant chickens, confirming their stronger antiviral response. Overall, our study provides insights into the role of lncRNAs in the host's response to HPAIV H5N1 infection in chickens and highlights potential candidates for further investigation into host-pathogen interactions. These findings could drive the development of novel control strategies for AIVs, significantly enhancing poultry health and biosecurity.</p>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 1","pages":"104524"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the role of long non-coding RNAs in chicken immune response to highly pathogenic avian influenza H5N1 infection.\",\"authors\":\"Thi Hao Vu, Chaeeun Kim, Anh Duc Truong, Jun-Mo Kim, Hyun S Lillehoj, Yeong Ho Hong\",\"doi\":\"10.1016/j.psj.2024.104524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Avian influenza viruses (AIVs) pose a significant threat to global poultry production, necessitating effective control strategies to mitigate economic losses and ensure animal welfare. Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of immune responses, yet their roles in AIV-infected chickens remain poorly understood. This study aimed to investigate the expression profiles of lncRNAs and their targets in Vietnamese Ri chickens infected with the highly pathogenic AIV (HPAIV) H5N1. Through RNA sequencing, we identified novel lncRNAs and analyzed differentially expressed (DE) transcripts at 1 and 3 days post-infection (dpi) in chicken lung tissue. Our results revealed a higher number of DE lncRNAs and mRNAs at 1 dpi and 3 dpi, respectively, compared to control, with resistant chickens exhibiting a notably stronger immune response than susceptible chickens at 3 dpi. Functional analysis implicated these lncRNAs in immune-related pathways crucial for host responses to H5N1 viral infection. Furthermore, we identified lncRNA-mRNA interactions associated with antiviral responses and immune function. Notably, several genes involved in antiviral resistance and immune responses showed higher expression in resistant chickens, confirming their stronger antiviral response. Overall, our study provides insights into the role of lncRNAs in the host's response to HPAIV H5N1 infection in chickens and highlights potential candidates for further investigation into host-pathogen interactions. These findings could drive the development of novel control strategies for AIVs, significantly enhancing poultry health and biosecurity.</p>\",\"PeriodicalId\":20459,\"journal\":{\"name\":\"Poultry Science\",\"volume\":\"104 1\",\"pages\":\"104524\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.psj.2024.104524\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.psj.2024.104524","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

禽流感病毒(AIVs)对全球家禽生产构成了重大威胁,因此必须采取有效的控制策略来减少经济损失并确保动物福利。长非编码 RNA(lncRNA)已成为免疫反应的关键调节因子,但它们在 AIV 感染鸡中的作用仍鲜为人知。本研究旨在调查lncRNA及其靶标在感染高致病性AIV(HPAIV)H5N1的越南里鸡中的表达谱。通过RNA测序,我们鉴定了新型lncRNAs,并分析了感染后1天和3天(dpi)鸡肺组织中的差异表达(DE)转录本。我们的结果显示,与对照组相比,1 dpi 和 3 dpi 的 DE lncRNA 和 mRNA 数量更多,3 dpi 时,耐药鸡的免疫反应明显强于易感鸡。功能分析表明,这些lncRNA参与了对宿主应对H5N1病毒感染至关重要的免疫相关通路。此外,我们还发现了与抗病毒反应和免疫功能相关的lncRNA-mRNA相互作用。值得注意的是,一些参与抗病毒和免疫反应的基因在耐药鸡中的表达量更高,这证实了它们更强的抗病毒反应能力。总之,我们的研究深入揭示了lncRNA在宿主对鸡感染高致病性禽流感病毒(HPAIV)H5N1的反应中的作用,并突出了进一步研究宿主-病原体相互作用的潜在候选基因。这些发现可能会推动新型禽流感病毒控制策略的开发,从而大大提高家禽健康和生物安全水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the role of long non-coding RNAs in chicken immune response to highly pathogenic avian influenza H5N1 infection.

Avian influenza viruses (AIVs) pose a significant threat to global poultry production, necessitating effective control strategies to mitigate economic losses and ensure animal welfare. Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of immune responses, yet their roles in AIV-infected chickens remain poorly understood. This study aimed to investigate the expression profiles of lncRNAs and their targets in Vietnamese Ri chickens infected with the highly pathogenic AIV (HPAIV) H5N1. Through RNA sequencing, we identified novel lncRNAs and analyzed differentially expressed (DE) transcripts at 1 and 3 days post-infection (dpi) in chicken lung tissue. Our results revealed a higher number of DE lncRNAs and mRNAs at 1 dpi and 3 dpi, respectively, compared to control, with resistant chickens exhibiting a notably stronger immune response than susceptible chickens at 3 dpi. Functional analysis implicated these lncRNAs in immune-related pathways crucial for host responses to H5N1 viral infection. Furthermore, we identified lncRNA-mRNA interactions associated with antiviral responses and immune function. Notably, several genes involved in antiviral resistance and immune responses showed higher expression in resistant chickens, confirming their stronger antiviral response. Overall, our study provides insights into the role of lncRNAs in the host's response to HPAIV H5N1 infection in chickens and highlights potential candidates for further investigation into host-pathogen interactions. These findings could drive the development of novel control strategies for AIVs, significantly enhancing poultry health and biosecurity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Poultry Science
Poultry Science 农林科学-奶制品与动物科学
CiteScore
7.60
自引率
15.90%
发文量
0
审稿时长
94 days
期刊介绍: First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers. An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.
期刊最新文献
Cadmium and polyvinyl chloride microplastics induce mitochondrial damage and apoptosis under oxidative stress in duck kidney. Effects of different monochromatic light on growth performance and liver circadian rhythm of Yangzhou geese. Transcriptomic analysis of melatonin on the mechanism of embryonic gonadal development in female Jilin white geese. Effects of organic acid blends on the growth performance, intestinal morphology, microbiota, and serum lipid parameters of broiler chickens. Interactive effect of dietary metabolizable energy levels with amino acid density in male broiler chickens: Carcass yield, nutrient intake, digestibility and excretion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1