Dan Li, Han Lu, Junhui Wu, Hongbo Chen, Meidi Shen, Beibei Tong, Wen Zeng, Weixuan Wang, Shaomei Shang
{"title":"开发用于预测膝关节骨关节炎患者抑郁症状的机器学习模型。","authors":"Dan Li, Han Lu, Junhui Wu, Hongbo Chen, Meidi Shen, Beibei Tong, Wen Zeng, Weixuan Wang, Shaomei Shang","doi":"10.1038/s41598-024-79601-x","DOIUrl":null,"url":null,"abstract":"<p><p>Knee osteoarthritis (KOA) combined with depressive symptoms is prevalent and leads to poor outcomes and significant financial burdens. However, practical tools for identifying at-risk patients remain limited. A robust prediction model is needed to address this gap. This study aims to develop and validate a predictive model to identify KOA patients at risk of developing depressive symptoms. The China Health and Retirement Longitudinal Survey (CHARLS) data were used for model development and the Osteoarthritis Initiative (OAI) for external validation. 18 potential predictors were selected using LASSO regression. 4 machine learning models-logistic regression, decision tree, random forest, and artificial neural network-were developed. Model performance was assessed using the area under the operating characteristic curve (AUC), calibration curves, and decision curve analysis. The most important features were extracted from the optimal model on external validation. A total of 469 individuals were included, with 70% used for training and 30% for testing. The random forest model achieved the best performance, with an AUC of 0.928 in the test set, outperforming logistic regression (AUC 0.622), decision tree (AUC 0.611), and neural network models (AUC 0.868). External validation revealed an AUC of 0.877 (95% CI: 0.864-0.889) for the adjusted random forest model. Pain severity was the most significant predictor, followed by the five-time sit-to-stand test (FTSST) and sleep problems. This study is the first in China to apply a predictive model for depressive symptoms in KOA patients, offering a practical tool for early risk identification using routinely available data.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28603"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577092/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of machine learning models for predicting depressive symptoms in knee osteoarthritis patients.\",\"authors\":\"Dan Li, Han Lu, Junhui Wu, Hongbo Chen, Meidi Shen, Beibei Tong, Wen Zeng, Weixuan Wang, Shaomei Shang\",\"doi\":\"10.1038/s41598-024-79601-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knee osteoarthritis (KOA) combined with depressive symptoms is prevalent and leads to poor outcomes and significant financial burdens. However, practical tools for identifying at-risk patients remain limited. A robust prediction model is needed to address this gap. This study aims to develop and validate a predictive model to identify KOA patients at risk of developing depressive symptoms. The China Health and Retirement Longitudinal Survey (CHARLS) data were used for model development and the Osteoarthritis Initiative (OAI) for external validation. 18 potential predictors were selected using LASSO regression. 4 machine learning models-logistic regression, decision tree, random forest, and artificial neural network-were developed. Model performance was assessed using the area under the operating characteristic curve (AUC), calibration curves, and decision curve analysis. The most important features were extracted from the optimal model on external validation. A total of 469 individuals were included, with 70% used for training and 30% for testing. The random forest model achieved the best performance, with an AUC of 0.928 in the test set, outperforming logistic regression (AUC 0.622), decision tree (AUC 0.611), and neural network models (AUC 0.868). External validation revealed an AUC of 0.877 (95% CI: 0.864-0.889) for the adjusted random forest model. Pain severity was the most significant predictor, followed by the five-time sit-to-stand test (FTSST) and sleep problems. This study is the first in China to apply a predictive model for depressive symptoms in KOA patients, offering a practical tool for early risk identification using routinely available data.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"28603\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-79601-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79601-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Development of machine learning models for predicting depressive symptoms in knee osteoarthritis patients.
Knee osteoarthritis (KOA) combined with depressive symptoms is prevalent and leads to poor outcomes and significant financial burdens. However, practical tools for identifying at-risk patients remain limited. A robust prediction model is needed to address this gap. This study aims to develop and validate a predictive model to identify KOA patients at risk of developing depressive symptoms. The China Health and Retirement Longitudinal Survey (CHARLS) data were used for model development and the Osteoarthritis Initiative (OAI) for external validation. 18 potential predictors were selected using LASSO regression. 4 machine learning models-logistic regression, decision tree, random forest, and artificial neural network-were developed. Model performance was assessed using the area under the operating characteristic curve (AUC), calibration curves, and decision curve analysis. The most important features were extracted from the optimal model on external validation. A total of 469 individuals were included, with 70% used for training and 30% for testing. The random forest model achieved the best performance, with an AUC of 0.928 in the test set, outperforming logistic regression (AUC 0.622), decision tree (AUC 0.611), and neural network models (AUC 0.868). External validation revealed an AUC of 0.877 (95% CI: 0.864-0.889) for the adjusted random forest model. Pain severity was the most significant predictor, followed by the five-time sit-to-stand test (FTSST) and sleep problems. This study is the first in China to apply a predictive model for depressive symptoms in KOA patients, offering a practical tool for early risk identification using routinely available data.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.