贮藏储备有助于植物表型的可塑性吗?

IF 17.3 1区 生物学 Q1 PLANT SCIENCES Trends in Plant Science Pub Date : 2024-11-18 DOI:10.1016/j.tplants.2024.10.017
Joerg Fettke, Alisdair R Fernie
{"title":"贮藏储备有助于植物表型的可塑性吗?","authors":"Joerg Fettke, Alisdair R Fernie","doi":"10.1016/j.tplants.2024.10.017","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread colonization of diverse habitats by plants is attributed to their ability to adapt to changing environments through environmental phenotypic plasticity. This flexibility, particularly in carbon turnover, allows plants to adjust their physiology and development. Plants store carbon reserves as a metabolic strategy to overcome adversity, with a variety of isozymes evolving to enhance metabolic plasticity. Among these isoforms, some with entirely new functions have emerged, involved in novel metabolic pathways for carbon storage. Here, we discuss the role of these carbon stores, their impact on plant plasticity, methods by which such metabolic plasticity can be analyzed, and evolutionary aspects that have led to well-characterized as well as less well-known molecular mechanisms underlying carbon storage.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do storage reserves contribute to plant phenotypic plasticity?\",\"authors\":\"Joerg Fettke, Alisdair R Fernie\",\"doi\":\"10.1016/j.tplants.2024.10.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread colonization of diverse habitats by plants is attributed to their ability to adapt to changing environments through environmental phenotypic plasticity. This flexibility, particularly in carbon turnover, allows plants to adjust their physiology and development. Plants store carbon reserves as a metabolic strategy to overcome adversity, with a variety of isozymes evolving to enhance metabolic plasticity. Among these isoforms, some with entirely new functions have emerged, involved in novel metabolic pathways for carbon storage. Here, we discuss the role of these carbon stores, their impact on plant plasticity, methods by which such metabolic plasticity can be analyzed, and evolutionary aspects that have led to well-characterized as well as less well-known molecular mechanisms underlying carbon storage.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2024.10.017\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.10.017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物之所以能在不同的栖息地广泛定居,是因为它们能够通过环境表型的可塑性来适应不断变化的环境。这种灵活性,尤其是碳周转方面的灵活性,使植物能够调整其生理和发育。植物储存碳储备是一种克服逆境的新陈代谢策略,多种同工酶的进化增强了新陈代谢的可塑性。在这些同工酶中,出现了一些具有全新功能的同工酶,它们参与了新的碳储存代谢途径。在这里,我们将讨论这些碳储存的作用、它们对植物可塑性的影响、分析这种代谢可塑性的方法,以及导致碳储存的表征清楚和不太为人所知的分子机制的进化方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do storage reserves contribute to plant phenotypic plasticity?

The widespread colonization of diverse habitats by plants is attributed to their ability to adapt to changing environments through environmental phenotypic plasticity. This flexibility, particularly in carbon turnover, allows plants to adjust their physiology and development. Plants store carbon reserves as a metabolic strategy to overcome adversity, with a variety of isozymes evolving to enhance metabolic plasticity. Among these isoforms, some with entirely new functions have emerged, involved in novel metabolic pathways for carbon storage. Here, we discuss the role of these carbon stores, their impact on plant plasticity, methods by which such metabolic plasticity can be analyzed, and evolutionary aspects that have led to well-characterized as well as less well-known molecular mechanisms underlying carbon storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Plant Science
Trends in Plant Science 生物-植物科学
CiteScore
31.30
自引率
2.00%
发文量
196
审稿时长
6-12 weeks
期刊介绍: Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.
期刊最新文献
Do storage reserves contribute to plant phenotypic plasticity? Plasticity in plant mating systems. Soil compaction sensing mechanisms and root responses. The whole and its parts: cell-specific functions of brassinosteroids. Ecological intensification index: reducing global footprint of agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1