{"title":"METTL14 可抑制 YAP1 的表达和三阴性乳腺癌的干性。","authors":"Xupeng Bai, Jiarui Liu, Shujie Zhou, Lingzhi Wu, Xiaojie Feng, Pumin Zhang","doi":"10.1186/s13046-024-03225-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) has pronounced stemness that is associated with relapse. N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) plays a crucial role in shaping cellular behavior by modulating transcript expression. However, the role of m<sup>6</sup>A in TNBC stemness, as well as the mechanisms governing its abundance, has yet to be elucidated.</p><p><strong>Methods: </strong>We analyzed proteomic and transcriptomic data derived from breast cancer cohorts, with an emphasis on m<sup>6</sup>A regulators. To unravel the role of m<sup>6</sup>A in TNBC, we employed RNA sequencing, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays with mesenchymal stem-like (MSL) TNBC models. The clinical relevance was validated using human tissue microarrays and publicly accessible databases.</p><p><strong>Results: </strong>Our findings indicate that the global level of m<sup>6</sup>A modification in MSL TNBC is downregulated primarily due to the loss of methyltransferase-like 14 (METTL14). The diminished m<sup>6</sup>A modification is crucial for the maintenance of TNBC stemness, as it increases the expression of yes-associated protein 1 (YAP1) by blocking YTH domain-containing family protein 2 (YTHDF2)-mediated transcript decay, thereby promoting the activation of Hippo-independent YAP1 signaling. YAP1 is essential for sustaining the stemness regulated by METTL14. Furthermore, we demonstrated that the loss of METTL14 expression results from lysine-specific demethylase 1 (LSD1)-mediated removal of histone H3 lysine 4 methylation at the promoter region, which is critical for LSD1-driven stemness in TNBC.</p><p><strong>Conclusion: </strong>These findings present an epi-transcriptional mechanism that maintains Hippo-independent YAP1 signaling and plays a role in preserving the undifferentiated state of TNBC, which indicates the potential for targeting the LSD1-METTL14 axis to address TNBC stemness.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"307"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577812/pdf/","citationCount":"0","resultStr":"{\"title\":\"METTL14 suppresses the expression of YAP1 and the stemness of triple-negative breast cancer.\",\"authors\":\"Xupeng Bai, Jiarui Liu, Shujie Zhou, Lingzhi Wu, Xiaojie Feng, Pumin Zhang\",\"doi\":\"10.1186/s13046-024-03225-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) has pronounced stemness that is associated with relapse. N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) plays a crucial role in shaping cellular behavior by modulating transcript expression. However, the role of m<sup>6</sup>A in TNBC stemness, as well as the mechanisms governing its abundance, has yet to be elucidated.</p><p><strong>Methods: </strong>We analyzed proteomic and transcriptomic data derived from breast cancer cohorts, with an emphasis on m<sup>6</sup>A regulators. To unravel the role of m<sup>6</sup>A in TNBC, we employed RNA sequencing, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays with mesenchymal stem-like (MSL) TNBC models. The clinical relevance was validated using human tissue microarrays and publicly accessible databases.</p><p><strong>Results: </strong>Our findings indicate that the global level of m<sup>6</sup>A modification in MSL TNBC is downregulated primarily due to the loss of methyltransferase-like 14 (METTL14). The diminished m<sup>6</sup>A modification is crucial for the maintenance of TNBC stemness, as it increases the expression of yes-associated protein 1 (YAP1) by blocking YTH domain-containing family protein 2 (YTHDF2)-mediated transcript decay, thereby promoting the activation of Hippo-independent YAP1 signaling. YAP1 is essential for sustaining the stemness regulated by METTL14. Furthermore, we demonstrated that the loss of METTL14 expression results from lysine-specific demethylase 1 (LSD1)-mediated removal of histone H3 lysine 4 methylation at the promoter region, which is critical for LSD1-driven stemness in TNBC.</p><p><strong>Conclusion: </strong>These findings present an epi-transcriptional mechanism that maintains Hippo-independent YAP1 signaling and plays a role in preserving the undifferentiated state of TNBC, which indicates the potential for targeting the LSD1-METTL14 axis to address TNBC stemness.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"307\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577812/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03225-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03225-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
METTL14 suppresses the expression of YAP1 and the stemness of triple-negative breast cancer.
Background: Triple-negative breast cancer (TNBC) has pronounced stemness that is associated with relapse. N6-methyladenosine (m6A) plays a crucial role in shaping cellular behavior by modulating transcript expression. However, the role of m6A in TNBC stemness, as well as the mechanisms governing its abundance, has yet to be elucidated.
Methods: We analyzed proteomic and transcriptomic data derived from breast cancer cohorts, with an emphasis on m6A regulators. To unravel the role of m6A in TNBC, we employed RNA sequencing, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays with mesenchymal stem-like (MSL) TNBC models. The clinical relevance was validated using human tissue microarrays and publicly accessible databases.
Results: Our findings indicate that the global level of m6A modification in MSL TNBC is downregulated primarily due to the loss of methyltransferase-like 14 (METTL14). The diminished m6A modification is crucial for the maintenance of TNBC stemness, as it increases the expression of yes-associated protein 1 (YAP1) by blocking YTH domain-containing family protein 2 (YTHDF2)-mediated transcript decay, thereby promoting the activation of Hippo-independent YAP1 signaling. YAP1 is essential for sustaining the stemness regulated by METTL14. Furthermore, we demonstrated that the loss of METTL14 expression results from lysine-specific demethylase 1 (LSD1)-mediated removal of histone H3 lysine 4 methylation at the promoter region, which is critical for LSD1-driven stemness in TNBC.
Conclusion: These findings present an epi-transcriptional mechanism that maintains Hippo-independent YAP1 signaling and plays a role in preserving the undifferentiated state of TNBC, which indicates the potential for targeting the LSD1-METTL14 axis to address TNBC stemness.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.