利用双触发 MOF-Fe(DTNB)对谷胱甘肽进行稳健灵敏的比色检测。

Kaining Zhang, Hao Sun, Long Wei, Rui Hu, Hao Liu, Yongchao Lai, Xun Li
{"title":"利用双触发 MOF-Fe(DTNB)对谷胱甘肽进行稳健灵敏的比色检测。","authors":"Kaining Zhang, Hao Sun, Long Wei, Rui Hu, Hao Liu, Yongchao Lai, Xun Li","doi":"10.1016/j.saa.2024.125439","DOIUrl":null,"url":null,"abstract":"<p><p>Glutathione (GSH) levels have been well validated to correlate with a variety of physiological and pathological conditions, such as malignancy, cardiovascular disease and aging, making the development of accurate, robust and sensitive GSH detection methods highly desirable. In this study, a novel metal-organic framework (MOF-Fe(DTNB))-based colorimetric method with a favorable dual-triggering function was proposed. MOF-Fe(DTNB) exhibits high peroxidase activity, which can catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). This oxidation process of TMB can be inhibited not only by the reducing action of GSH, but also by the thiol exchange reaction between DTNB and GSH, in which the disulfide bond of DTNB in MOF-Fe(DTNB) is cleaved. Thus, with this dual triggering mechanism, the GSH concentration can be robustly measured in the MOF-Fe(DTNB)-derived colorimetric strategy. Significantly, this method is accurate (RSD < 6 %), selective and sensitive in biological plasma samples, with satisfactory recovery rates (96.7-103.3 %). It requires less instrumentation and has less interference from other substances. The linear range of the method is 0-80 µM, and the detection limit is as low as 0.28 µM. This dual-triggering MOF-Fe(DTNB)-derived colorimetric strategy has greatly simplified the GSH detection processes with improved accuracy, in both acidic and basic environments, which has potent applications in biochemical analysis and point-of-care testing.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"328 ","pages":"125439"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and sensitive colorimetric detection of glutathione with double-triggering MOF-Fe(DTNB).\",\"authors\":\"Kaining Zhang, Hao Sun, Long Wei, Rui Hu, Hao Liu, Yongchao Lai, Xun Li\",\"doi\":\"10.1016/j.saa.2024.125439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glutathione (GSH) levels have been well validated to correlate with a variety of physiological and pathological conditions, such as malignancy, cardiovascular disease and aging, making the development of accurate, robust and sensitive GSH detection methods highly desirable. In this study, a novel metal-organic framework (MOF-Fe(DTNB))-based colorimetric method with a favorable dual-triggering function was proposed. MOF-Fe(DTNB) exhibits high peroxidase activity, which can catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). This oxidation process of TMB can be inhibited not only by the reducing action of GSH, but also by the thiol exchange reaction between DTNB and GSH, in which the disulfide bond of DTNB in MOF-Fe(DTNB) is cleaved. Thus, with this dual triggering mechanism, the GSH concentration can be robustly measured in the MOF-Fe(DTNB)-derived colorimetric strategy. Significantly, this method is accurate (RSD < 6 %), selective and sensitive in biological plasma samples, with satisfactory recovery rates (96.7-103.3 %). It requires less instrumentation and has less interference from other substances. The linear range of the method is 0-80 µM, and the detection limit is as low as 0.28 µM. This dual-triggering MOF-Fe(DTNB)-derived colorimetric strategy has greatly simplified the GSH detection processes with improved accuracy, in both acidic and basic environments, which has potent applications in biochemical analysis and point-of-care testing.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"328 \",\"pages\":\"125439\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2024.125439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

谷胱甘肽(GSH)水平与多种生理和病理状况(如恶性肿瘤、心血管疾病和衰老)的相关性已得到充分验证,因此开发准确、稳健和灵敏的 GSH 检测方法非常必要。本研究提出了一种新型的基于金属有机框架(MOF-Fe(DTNB))的比色法,具有良好的双触发功能。MOF-Fe(DTNB) 具有很高的过氧化物酶活性,能催化无色的 3,3',5,5'-四甲基联苯胺(TMB)在过氧化氢(H2O2)的作用下氧化成蓝色的 ox-TMB。TMB 的这一氧化过程不仅可以通过 GSH 的还原作用来抑制,还可以通过 DTNB 和 GSH 之间的硫醇交换反应(DTNB 在 MOF-Fe(DTNB)中的二硫键被裂解)来抑制。因此,在这种双重触发机制下,MOF-Fe(DTNB)衍生的比色法可以稳健地测量 GSH 的浓度。值得注意的是,这种方法是准确的(RSD
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust and sensitive colorimetric detection of glutathione with double-triggering MOF-Fe(DTNB).

Glutathione (GSH) levels have been well validated to correlate with a variety of physiological and pathological conditions, such as malignancy, cardiovascular disease and aging, making the development of accurate, robust and sensitive GSH detection methods highly desirable. In this study, a novel metal-organic framework (MOF-Fe(DTNB))-based colorimetric method with a favorable dual-triggering function was proposed. MOF-Fe(DTNB) exhibits high peroxidase activity, which can catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB by hydrogen peroxide (H2O2). This oxidation process of TMB can be inhibited not only by the reducing action of GSH, but also by the thiol exchange reaction between DTNB and GSH, in which the disulfide bond of DTNB in MOF-Fe(DTNB) is cleaved. Thus, with this dual triggering mechanism, the GSH concentration can be robustly measured in the MOF-Fe(DTNB)-derived colorimetric strategy. Significantly, this method is accurate (RSD < 6 %), selective and sensitive in biological plasma samples, with satisfactory recovery rates (96.7-103.3 %). It requires less instrumentation and has less interference from other substances. The linear range of the method is 0-80 µM, and the detection limit is as low as 0.28 µM. This dual-triggering MOF-Fe(DTNB)-derived colorimetric strategy has greatly simplified the GSH detection processes with improved accuracy, in both acidic and basic environments, which has potent applications in biochemical analysis and point-of-care testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Age estimation of Phormia regina pupae based on ATR-FTIR and chemometrics. Exploring the charge transfer enhancement mechanism in selective SERS detection with Mo1-xWxS2@Ag2S nanosheets. Improving monitoring of dissolved organic matter from the wastewater treatment plant to the receiving environment: A new high-frequency in situ fluorescence sensor capable of analyzing 29 pairs of Ex/Em wavelengths. Theoretical study of excited state dynamics of a ratiometric fluorescent probe for detection of SO2 derivatives. A Dicyanoisophorone-based Fluorescent Turn-on Probe for Rapid Detecting Thiophenol in Aqueous Medium and Living Cell Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1