{"title":"基于生物层干涉测量、多光谱分析和计算评估,揭示血清白蛋白与牛酪蛋白水解物中抗高血压肽 Val-Ala-Pro 的相互作用。","authors":"Qian Zhou, Dankui Liao, Haibo Liu, Lei Wang, Xueping Zhang, Lixia Sun, Zhangfa Tong, Xuezhen Feng, Guangzhi Zhou","doi":"10.1016/j.saa.2024.125433","DOIUrl":null,"url":null,"abstract":"<p><p>Food-derived angiotensin-converting enzyme inhibitory peptide (ACEIP) has an effect in supportive therapeutic on hypertension. Bovine serum albumin (BSA) as a model transporter protein to explore the interaction mechanisms with casein-hydrolyzed ACEIP Val-Ala-Pro (VAP) by multi-spectroscopic, biolayer interferometry (BLI), isothermal titration calorimetry (ITC), molecular docking, and molecular dynamics simulations. Multi-spectroscopic analysis showed that the non-covalent complexes formed by VAP and BSA resulted in decreased hydrophobicity and α-helix contents on BSA, revealing the unfolding of the BSA structure. BLI revealed the reversible binding process of BSA to VAP. ITC confirmed that the combination of VAP to BSA was a spontaneous process mainly driven by entropy. Molecular docking and molecular dynamic simulations showed that VAP was primarily bound in site II of BSA by hydrogen bonding, hydrophobic interactions, van der Waals force, and electrostatic force. This study provides a systematic method to reveal the structure-activity relationship of ACEIPs.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"328 ","pages":"125433"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into the interaction of serum albumin with antihypertensive peptide Val-Ala-Pro from bovine casein hydrolysate based on the biolayer interferometry, multi-spectroscopic analysis and computational evaluation.\",\"authors\":\"Qian Zhou, Dankui Liao, Haibo Liu, Lei Wang, Xueping Zhang, Lixia Sun, Zhangfa Tong, Xuezhen Feng, Guangzhi Zhou\",\"doi\":\"10.1016/j.saa.2024.125433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Food-derived angiotensin-converting enzyme inhibitory peptide (ACEIP) has an effect in supportive therapeutic on hypertension. Bovine serum albumin (BSA) as a model transporter protein to explore the interaction mechanisms with casein-hydrolyzed ACEIP Val-Ala-Pro (VAP) by multi-spectroscopic, biolayer interferometry (BLI), isothermal titration calorimetry (ITC), molecular docking, and molecular dynamics simulations. Multi-spectroscopic analysis showed that the non-covalent complexes formed by VAP and BSA resulted in decreased hydrophobicity and α-helix contents on BSA, revealing the unfolding of the BSA structure. BLI revealed the reversible binding process of BSA to VAP. ITC confirmed that the combination of VAP to BSA was a spontaneous process mainly driven by entropy. Molecular docking and molecular dynamic simulations showed that VAP was primarily bound in site II of BSA by hydrogen bonding, hydrophobic interactions, van der Waals force, and electrostatic force. This study provides a systematic method to reveal the structure-activity relationship of ACEIPs.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"328 \",\"pages\":\"125433\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2024.125433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Insight into the interaction of serum albumin with antihypertensive peptide Val-Ala-Pro from bovine casein hydrolysate based on the biolayer interferometry, multi-spectroscopic analysis and computational evaluation.
Food-derived angiotensin-converting enzyme inhibitory peptide (ACEIP) has an effect in supportive therapeutic on hypertension. Bovine serum albumin (BSA) as a model transporter protein to explore the interaction mechanisms with casein-hydrolyzed ACEIP Val-Ala-Pro (VAP) by multi-spectroscopic, biolayer interferometry (BLI), isothermal titration calorimetry (ITC), molecular docking, and molecular dynamics simulations. Multi-spectroscopic analysis showed that the non-covalent complexes formed by VAP and BSA resulted in decreased hydrophobicity and α-helix contents on BSA, revealing the unfolding of the BSA structure. BLI revealed the reversible binding process of BSA to VAP. ITC confirmed that the combination of VAP to BSA was a spontaneous process mainly driven by entropy. Molecular docking and molecular dynamic simulations showed that VAP was primarily bound in site II of BSA by hydrogen bonding, hydrophobic interactions, van der Waals force, and electrostatic force. This study provides a systematic method to reveal the structure-activity relationship of ACEIPs.