Fan Wei, Enjing Wei, Yuan Chen, Jinhui Li, Quanyin Tan
{"title":"回收还是不回收?通过本地案例研究探讨塑料加工过程中微塑料的产生","authors":"Fan Wei, Enjing Wei, Yuan Chen, Jinhui Li, Quanyin Tan","doi":"10.1021/acs.est.4c07430","DOIUrl":null,"url":null,"abstract":"Microplastic (MP), an emerging pollutant, has been identified as a critical target in tackling plastic pollution. Although a plethora of studies have explored MP generation from various sources, limited attention has been paid to plastic processing. This study investigated MP (10 μm–5 mm) generation in virgin and waste plastic extrusion processing. MPs at a density of 2.13 × 10<sup>5</sup>–9.79 × 10<sup>7</sup> (approximately 0.01–10.85 g) were generated when processing 1 t of plastic. Feedstock sources, polymer types, and pelletizing techniques were found to influence the process. With a moderate weight (270.58–527.34 t) but enormous amount (1.34 × 10<sup>16</sup>–2.63 × 10<sup>16</sup>) of MPs generated globally in 2022, plastic processing is an underestimated but vital source of MPs, emphasizing the need for MP inspection and appropriate removal technologies in the industry, especially for virgin plastic processing and water ring pelletizing. Further simulation indicated that up to 84.35% of MPs could be removed using commonly available materials in the investigated plastic processing facility, with a higher removal efficiency for larger-sized particles. In this regard, plastic recycling was superior to virgin plastic processing with fewer and larger-sized MPs generated, which could facilitate MP removal and should be fostered.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"9 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recycle or Not? An Exploration of Microplastic Generation During Plastic Processing via a Local Case Study\",\"authors\":\"Fan Wei, Enjing Wei, Yuan Chen, Jinhui Li, Quanyin Tan\",\"doi\":\"10.1021/acs.est.4c07430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microplastic (MP), an emerging pollutant, has been identified as a critical target in tackling plastic pollution. Although a plethora of studies have explored MP generation from various sources, limited attention has been paid to plastic processing. This study investigated MP (10 μm–5 mm) generation in virgin and waste plastic extrusion processing. MPs at a density of 2.13 × 10<sup>5</sup>–9.79 × 10<sup>7</sup> (approximately 0.01–10.85 g) were generated when processing 1 t of plastic. Feedstock sources, polymer types, and pelletizing techniques were found to influence the process. With a moderate weight (270.58–527.34 t) but enormous amount (1.34 × 10<sup>16</sup>–2.63 × 10<sup>16</sup>) of MPs generated globally in 2022, plastic processing is an underestimated but vital source of MPs, emphasizing the need for MP inspection and appropriate removal technologies in the industry, especially for virgin plastic processing and water ring pelletizing. Further simulation indicated that up to 84.35% of MPs could be removed using commonly available materials in the investigated plastic processing facility, with a higher removal efficiency for larger-sized particles. In this regard, plastic recycling was superior to virgin plastic processing with fewer and larger-sized MPs generated, which could facilitate MP removal and should be fostered.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c07430\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07430","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Recycle or Not? An Exploration of Microplastic Generation During Plastic Processing via a Local Case Study
Microplastic (MP), an emerging pollutant, has been identified as a critical target in tackling plastic pollution. Although a plethora of studies have explored MP generation from various sources, limited attention has been paid to plastic processing. This study investigated MP (10 μm–5 mm) generation in virgin and waste plastic extrusion processing. MPs at a density of 2.13 × 105–9.79 × 107 (approximately 0.01–10.85 g) were generated when processing 1 t of plastic. Feedstock sources, polymer types, and pelletizing techniques were found to influence the process. With a moderate weight (270.58–527.34 t) but enormous amount (1.34 × 1016–2.63 × 1016) of MPs generated globally in 2022, plastic processing is an underestimated but vital source of MPs, emphasizing the need for MP inspection and appropriate removal technologies in the industry, especially for virgin plastic processing and water ring pelletizing. Further simulation indicated that up to 84.35% of MPs could be removed using commonly available materials in the investigated plastic processing facility, with a higher removal efficiency for larger-sized particles. In this regard, plastic recycling was superior to virgin plastic processing with fewer and larger-sized MPs generated, which could facilitate MP removal and should be fostered.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.