基于先进计量基础设施的负荷监测,实时估算工业用户的碳排放量

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Cleaner Production Pub Date : 2024-11-20 DOI:10.1016/j.jclepro.2024.144226
Yunpeng Gao, Jiangzhao Wang, Yanqing Zhu, Wei Zhang, Fei Teng, Yunfeng Li
{"title":"基于先进计量基础设施的负荷监测,实时估算工业用户的碳排放量","authors":"Yunpeng Gao,&nbsp;Jiangzhao Wang,&nbsp;Yanqing Zhu,&nbsp;Wei Zhang,&nbsp;Fei Teng,&nbsp;Yunfeng Li","doi":"10.1016/j.jclepro.2024.144226","DOIUrl":null,"url":null,"abstract":"<div><div>To reduce carbon emissions, it is important to monitor carbon emissions by industrial users related to electricity. Current monitoring schemes have limited effect in real-time carbon emission monitoring while the development of Advanced metering infrastructure (AMI) and emission factors for carbon-related devices introduces a fresh outlook. Hence, a method based on carbon-related load monitoring in AMI is proposed. The proposed method comprises three essential components: the one-hot component, the random convolution component, and the grid search component. The one-hot component can transform multi-state and multi-device identification into multi-classification problems, making <span><math><msub><mrow><mtext>CO</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions calculations easier for industrial users. The random convolution component effectively distinguishes the electricity characteristics to identify various states of carbon-related devices, while the grid search component optimizes hyperparameters to enhance recognition accuracy and decrease carbon emission monitoring errors. The effectiveness of the proposed approach is evaluated through experiments conducted on several industrial users. Comparative analysis with alternative methods demonstrates the superior performance of the proposed approach, indicating its effectiveness in accurately estimating carbon emissions for industrial users on these metrics including ACC, <span><math><msub><mrow><mi>Recall</mi></mrow><mrow><mi>micro</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>Recall</mi></mrow><mrow><mi>macro</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>Precision</mi></mrow><mrow><mi>micro</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>Precision</mi></mrow><mrow><mi>macro</mi></mrow></msub></math></span>, <span><math><mrow><mi>F</mi><msub><mrow><mn>1</mn></mrow><mrow><mtext>micro</mtext></mrow></msub></mrow></math></span> and <span><math><mrow><mi>F</mi><msub><mrow><mn>1</mn></mrow><mrow><mtext>macro</mtext></mrow></msub></mrow></math></span>.</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"483 ","pages":"Article 144226"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real time estimation of carbon emissions for industrial users based on load monitoring in advanced metering infrastructure\",\"authors\":\"Yunpeng Gao,&nbsp;Jiangzhao Wang,&nbsp;Yanqing Zhu,&nbsp;Wei Zhang,&nbsp;Fei Teng,&nbsp;Yunfeng Li\",\"doi\":\"10.1016/j.jclepro.2024.144226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To reduce carbon emissions, it is important to monitor carbon emissions by industrial users related to electricity. Current monitoring schemes have limited effect in real-time carbon emission monitoring while the development of Advanced metering infrastructure (AMI) and emission factors for carbon-related devices introduces a fresh outlook. Hence, a method based on carbon-related load monitoring in AMI is proposed. The proposed method comprises three essential components: the one-hot component, the random convolution component, and the grid search component. The one-hot component can transform multi-state and multi-device identification into multi-classification problems, making <span><math><msub><mrow><mtext>CO</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions calculations easier for industrial users. The random convolution component effectively distinguishes the electricity characteristics to identify various states of carbon-related devices, while the grid search component optimizes hyperparameters to enhance recognition accuracy and decrease carbon emission monitoring errors. The effectiveness of the proposed approach is evaluated through experiments conducted on several industrial users. Comparative analysis with alternative methods demonstrates the superior performance of the proposed approach, indicating its effectiveness in accurately estimating carbon emissions for industrial users on these metrics including ACC, <span><math><msub><mrow><mi>Recall</mi></mrow><mrow><mi>micro</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>Recall</mi></mrow><mrow><mi>macro</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>Precision</mi></mrow><mrow><mi>micro</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>Precision</mi></mrow><mrow><mi>macro</mi></mrow></msub></math></span>, <span><math><mrow><mi>F</mi><msub><mrow><mn>1</mn></mrow><mrow><mtext>micro</mtext></mrow></msub></mrow></math></span> and <span><math><mrow><mi>F</mi><msub><mrow><mn>1</mn></mrow><mrow><mtext>macro</mtext></mrow></msub></mrow></math></span>.</div></div>\",\"PeriodicalId\":349,\"journal\":{\"name\":\"Journal of Cleaner Production\",\"volume\":\"483 \",\"pages\":\"Article 144226\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cleaner Production\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959652624036758\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652624036758","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

为了减少碳排放,监测与电力相关的工业用户的碳排放非常重要。目前的监测方案在实时碳排放监测方面效果有限,而先进计量基础设施(AMI)和碳相关设备排放因子的发展则带来了新的前景。因此,本文提出了一种基于 AMI 中碳相关负荷监测的方法。所提出的方法由三个基本部分组成:单击部分、随机卷积部分和网格搜索部分。单击组件可将多状态和多设备识别转化为多分类问题,使工业用户更容易计算二氧化碳排放量。随机卷积组件能有效区分电力特性,从而识别各种状态的涉碳设备,而网格搜索组件则能优化超参数,从而提高识别精度,减少碳排放监测误差。通过对几个工业用户进行实验,评估了所提方法的有效性。与其他方法的对比分析表明了所提方法的优越性能,表明该方法能在 ACC、Recallmicro、Recallmacro、Precisionmicro、Precisionmacro、F1micro 和 F1macro 等指标上准确估计工业用户的碳排放量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real time estimation of carbon emissions for industrial users based on load monitoring in advanced metering infrastructure
To reduce carbon emissions, it is important to monitor carbon emissions by industrial users related to electricity. Current monitoring schemes have limited effect in real-time carbon emission monitoring while the development of Advanced metering infrastructure (AMI) and emission factors for carbon-related devices introduces a fresh outlook. Hence, a method based on carbon-related load monitoring in AMI is proposed. The proposed method comprises three essential components: the one-hot component, the random convolution component, and the grid search component. The one-hot component can transform multi-state and multi-device identification into multi-classification problems, making CO2 emissions calculations easier for industrial users. The random convolution component effectively distinguishes the electricity characteristics to identify various states of carbon-related devices, while the grid search component optimizes hyperparameters to enhance recognition accuracy and decrease carbon emission monitoring errors. The effectiveness of the proposed approach is evaluated through experiments conducted on several industrial users. Comparative analysis with alternative methods demonstrates the superior performance of the proposed approach, indicating its effectiveness in accurately estimating carbon emissions for industrial users on these metrics including ACC, Recallmicro, Recallmacro, Precisionmicro, Precisionmacro, F1micro and F1macro.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
期刊最新文献
Investigating the behavioural intention towards electric vehicle: A dual factor approach using Sweeney and Soutar’s PERVAL scale and technology acceptance model Corrigendum to “Innovative approach for assessing nitrogen loss risk to surface waters from crop production in a watershed scale through nitrogen surplus index method” [J. Clean. Product. 475 (2024) 143725] Using process modeling and simulation to determine the sustainability of a novel lactic acid biorefinery in Europe: Influence of process improvements, scale, energy source, and market conditions Renewable Energy Communities in Rural Areas: A Comprehensive Overview of Current Development, Challenges, and Emerging Trends Benchmarking Circular Economy Measures in Buildings Along the 11R Framework: A Systematic Review of Quantified Impacts on Material Use, Energy Consumption, GHG Emissions, and Costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1