高分散金钯合金纳米点实现二氧化碳介导的氢能释放与存储

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-20 DOI:10.1002/smll.202407578
Rui Luo, Panzhe Qiao, Mengqi Zeng, Xinyue Deng, Hui Wang, Weiju Hao, Jinchen Fan, Qingyuan Bi, Guisheng Li, Yong Cao
{"title":"高分散金钯合金纳米点实现二氧化碳介导的氢能释放与存储","authors":"Rui Luo, Panzhe Qiao, Mengqi Zeng, Xinyue Deng, Hui Wang, Weiju Hao, Jinchen Fan, Qingyuan Bi, Guisheng Li, Yong Cao","doi":"10.1002/smll.202407578","DOIUrl":null,"url":null,"abstract":"Developing and fabricating a heterogeneous catalyst for efficient formic acid (FA) dehydrogenation coupled with CO<sub>2</sub> hydrogenation back to FA is a promising approach to constructing a complete CO<sub>2</sub>-mediated hydrogen release-storage system, which remains challenging. Herein, a facile two-step strategy involving high-temperature pyrolysis and wet chemical reduction processes can synthesize efficient pyridinic-nitrogen-modified carbon-loaded gold-palladium alloy nanodots (AuPd alloy NDs). These NDs exhibit a prominent electron synergistic effect between Au and Pd components and tunable alloy−support interactions. The pyridinic-N dosage in carbon substrate improves the surface electron density of the alloy catalyst, thus regulating the chemical adsorption of FA molecules. Specifically, the engineered Au<sub>3</sub>Pd<sub>7</sub>/CN<sub>0.25</sub> demonstrates an outstanding room-temperature FA dehydrogenation efficiency, achieving ≈100% conversion and an initial turnover frequency (TOF) of up to 9049 h<sup>−1</sup>. The versatile AuPd alloy NDs also show the ability to convert CO<sub>2</sub>, one of the products of FA dehydrogenation, into FA (formate) with a 90.8% yield under mild conditions. Moreover, in-depth insights into the unique alloyed microstructure, structure-activity relationship, key intermediates, and the alloy-driven five-step reaction mechanism involving the rate-determining step of C─H bond cleavage from critical *HCOO species via D-labeled isotope, in situ infrared spectroscopy, and theoretical calculations are investigated.","PeriodicalId":228,"journal":{"name":"Small","volume":"33 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2-Mediated Hydrogen Energy Release-Storage Enabled by High-Dispersion Gold-Palladium Alloy Nanodots\",\"authors\":\"Rui Luo, Panzhe Qiao, Mengqi Zeng, Xinyue Deng, Hui Wang, Weiju Hao, Jinchen Fan, Qingyuan Bi, Guisheng Li, Yong Cao\",\"doi\":\"10.1002/smll.202407578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing and fabricating a heterogeneous catalyst for efficient formic acid (FA) dehydrogenation coupled with CO<sub>2</sub> hydrogenation back to FA is a promising approach to constructing a complete CO<sub>2</sub>-mediated hydrogen release-storage system, which remains challenging. Herein, a facile two-step strategy involving high-temperature pyrolysis and wet chemical reduction processes can synthesize efficient pyridinic-nitrogen-modified carbon-loaded gold-palladium alloy nanodots (AuPd alloy NDs). These NDs exhibit a prominent electron synergistic effect between Au and Pd components and tunable alloy−support interactions. The pyridinic-N dosage in carbon substrate improves the surface electron density of the alloy catalyst, thus regulating the chemical adsorption of FA molecules. Specifically, the engineered Au<sub>3</sub>Pd<sub>7</sub>/CN<sub>0.25</sub> demonstrates an outstanding room-temperature FA dehydrogenation efficiency, achieving ≈100% conversion and an initial turnover frequency (TOF) of up to 9049 h<sup>−1</sup>. The versatile AuPd alloy NDs also show the ability to convert CO<sub>2</sub>, one of the products of FA dehydrogenation, into FA (formate) with a 90.8% yield under mild conditions. Moreover, in-depth insights into the unique alloyed microstructure, structure-activity relationship, key intermediates, and the alloy-driven five-step reaction mechanism involving the rate-determining step of C─H bond cleavage from critical *HCOO species via D-labeled isotope, in situ infrared spectroscopy, and theoretical calculations are investigated.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202407578\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407578","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发和制造一种用于高效甲酸(FA)脱氢和二氧化碳加氢回甲酸的异相催化剂,是构建完整的二氧化碳介导的释氢-储氢系统的一种有前途的方法,但这一方法仍具有挑战性。在此,一种涉及高温热解和湿化学还原过程的简便两步法可以合成高效的吡啶氮修饰碳负载金钯合金纳米点(AuPd alloy NDs)。这些 NDs 表现出金和钯成分之间显著的电子协同效应以及可调的合金-支撑相互作用。碳基底中吡啶-N的用量提高了合金催化剂的表面电子密度,从而调节了FA分子的化学吸附。具体而言,工程化 Au3Pd7/CN0.25 具有出色的室温 FA 脱氢效率,转化率≈100%,初始周转频率 (TOF) 高达 9049 h-1。多功能 AuPd 合金 ND 还显示了在温和条件下将 FA 脱氢产物之一 CO2 转化为 FA(甲酸酯)的能力,转化率达 90.8%。此外,还通过 D 标记同位素、原位红外光谱和理论计算深入研究了独特的合金微观结构、结构-活性关系、关键中间产物以及合金驱动的五步反应机理,其中包括从临界 *HCOO 物种裂解 C─H 键的速率决定步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO2-Mediated Hydrogen Energy Release-Storage Enabled by High-Dispersion Gold-Palladium Alloy Nanodots
Developing and fabricating a heterogeneous catalyst for efficient formic acid (FA) dehydrogenation coupled with CO2 hydrogenation back to FA is a promising approach to constructing a complete CO2-mediated hydrogen release-storage system, which remains challenging. Herein, a facile two-step strategy involving high-temperature pyrolysis and wet chemical reduction processes can synthesize efficient pyridinic-nitrogen-modified carbon-loaded gold-palladium alloy nanodots (AuPd alloy NDs). These NDs exhibit a prominent electron synergistic effect between Au and Pd components and tunable alloy−support interactions. The pyridinic-N dosage in carbon substrate improves the surface electron density of the alloy catalyst, thus regulating the chemical adsorption of FA molecules. Specifically, the engineered Au3Pd7/CN0.25 demonstrates an outstanding room-temperature FA dehydrogenation efficiency, achieving ≈100% conversion and an initial turnover frequency (TOF) of up to 9049 h−1. The versatile AuPd alloy NDs also show the ability to convert CO2, one of the products of FA dehydrogenation, into FA (formate) with a 90.8% yield under mild conditions. Moreover, in-depth insights into the unique alloyed microstructure, structure-activity relationship, key intermediates, and the alloy-driven five-step reaction mechanism involving the rate-determining step of C─H bond cleavage from critical *HCOO species via D-labeled isotope, in situ infrared spectroscopy, and theoretical calculations are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A Highly Compatible Deep Eutectic Solvent-Based Poly(ethylene) Oxide Polymer Electrolyte to Enable the Stable Operation of 4.5 V Lithium Metal Batteries Supercrystal Engineering of Nanoarrows Enabled by Tailored Concavity (Small 47/2024) Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications (Small 47/2024) Copper-Graphene Composite (CGC) Conductors: Synthesis, Microstructure, and Electrical Performance (Small 47/2024) Multi-Biomarker Profiling for Precision Diagnosis of Lung Cancer (Small 47/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1