Eleni D. Salonikidou, Karina Kowalska, Dimitrios A. Giannakoudakis, Antigoni Margellou, Evanthia Nanaki, Spyros Kiartzis, Mariusz Barczak, Piotr Borowski, Konstantinos S. Triantafyllidis
{"title":"融合实验和理论方法,了解纳米多孔碳对柴油的实际脱硫作用","authors":"Eleni D. Salonikidou, Karina Kowalska, Dimitrios A. Giannakoudakis, Antigoni Margellou, Evanthia Nanaki, Spyros Kiartzis, Mariusz Barczak, Piotr Borowski, Konstantinos S. Triantafyllidis","doi":"10.1016/j.cej.2024.157858","DOIUrl":null,"url":null,"abstract":"Experimental tests combined with theoretical calculations have yielded new insights into real diesel fuel desulfurization (rDeSulfur) using activated nanoporous carbons. The carbons were selected for their varying physicochemical properties and further were chemically treated to modify their surface chemistry, aiming to investigate the impact of the major physicochemical features on rDeSulfur. The experimental findings demonstrated that both porosity and surface chemistry play complex roles. Specifically, a high degree of graphitization and diverse pore size distributions enhanced adsorptive capabilities, with some carbon samples achieving ultra-deep desulfurization levels (<1 ppmwS). Theoretical calculations indicated that π-π stacking through dispersion forces was the primary mechanism of adsorption. While surface functionalities at the edges of graphene had minimal impact on interaction strength, structural defects, especially clusters of three quaternary nitrogen atoms or single defected vacancy with OH group, improved interaction energies, boosting adsorption effectiveness compared to pristine graphene. The study concludes that the effectiveness of carbons in diesel desulfurization depends heavily on graphitization levels, defects, and where specific functionalities are located. Lastly, although aromatic compounds in diesel, like benzene, toluene, and naphthalene, compete with thiophenics for adsorption, they have lower interaction energies, suggesting preferential adsorption of sulfur compounds over the aromatics.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"18 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Merging experimental and theoretical approaches towards understanding real diesel fuel desulfurization by nanoporous carbons\",\"authors\":\"Eleni D. Salonikidou, Karina Kowalska, Dimitrios A. Giannakoudakis, Antigoni Margellou, Evanthia Nanaki, Spyros Kiartzis, Mariusz Barczak, Piotr Borowski, Konstantinos S. Triantafyllidis\",\"doi\":\"10.1016/j.cej.2024.157858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental tests combined with theoretical calculations have yielded new insights into real diesel fuel desulfurization (rDeSulfur) using activated nanoporous carbons. The carbons were selected for their varying physicochemical properties and further were chemically treated to modify their surface chemistry, aiming to investigate the impact of the major physicochemical features on rDeSulfur. The experimental findings demonstrated that both porosity and surface chemistry play complex roles. Specifically, a high degree of graphitization and diverse pore size distributions enhanced adsorptive capabilities, with some carbon samples achieving ultra-deep desulfurization levels (<1 ppmwS). Theoretical calculations indicated that π-π stacking through dispersion forces was the primary mechanism of adsorption. While surface functionalities at the edges of graphene had minimal impact on interaction strength, structural defects, especially clusters of three quaternary nitrogen atoms or single defected vacancy with OH group, improved interaction energies, boosting adsorption effectiveness compared to pristine graphene. The study concludes that the effectiveness of carbons in diesel desulfurization depends heavily on graphitization levels, defects, and where specific functionalities are located. Lastly, although aromatic compounds in diesel, like benzene, toluene, and naphthalene, compete with thiophenics for adsorption, they have lower interaction energies, suggesting preferential adsorption of sulfur compounds over the aromatics.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157858\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157858","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Merging experimental and theoretical approaches towards understanding real diesel fuel desulfurization by nanoporous carbons
Experimental tests combined with theoretical calculations have yielded new insights into real diesel fuel desulfurization (rDeSulfur) using activated nanoporous carbons. The carbons were selected for their varying physicochemical properties and further were chemically treated to modify their surface chemistry, aiming to investigate the impact of the major physicochemical features on rDeSulfur. The experimental findings demonstrated that both porosity and surface chemistry play complex roles. Specifically, a high degree of graphitization and diverse pore size distributions enhanced adsorptive capabilities, with some carbon samples achieving ultra-deep desulfurization levels (<1 ppmwS). Theoretical calculations indicated that π-π stacking through dispersion forces was the primary mechanism of adsorption. While surface functionalities at the edges of graphene had minimal impact on interaction strength, structural defects, especially clusters of three quaternary nitrogen atoms or single defected vacancy with OH group, improved interaction energies, boosting adsorption effectiveness compared to pristine graphene. The study concludes that the effectiveness of carbons in diesel desulfurization depends heavily on graphitization levels, defects, and where specific functionalities are located. Lastly, although aromatic compounds in diesel, like benzene, toluene, and naphthalene, compete with thiophenics for adsorption, they have lower interaction energies, suggesting preferential adsorption of sulfur compounds over the aromatics.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.