二维导电金属有机框架增强了动态图像刷新、分类和传出神经肌肉系统的突触可塑性

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-21 DOI:10.1021/acs.nanolett.4c04650
Huanhuan Wei, Jiaqi Liu, Yao Ni, Xuanxin Hu, Xiuliang Lv, Lu Yang, Gang He, Zhipeng Xu, Jiangdong Gong, Chengpeng Jiang, Dawei Feng, Wentao Xu
{"title":"二维导电金属有机框架增强了动态图像刷新、分类和传出神经肌肉系统的突触可塑性","authors":"Huanhuan Wei, Jiaqi Liu, Yao Ni, Xuanxin Hu, Xiuliang Lv, Lu Yang, Gang He, Zhipeng Xu, Jiangdong Gong, Chengpeng Jiang, Dawei Feng, Wentao Xu","doi":"10.1021/acs.nanolett.4c04650","DOIUrl":null,"url":null,"abstract":"We present a two-dimensional (2D) electrically conductive metal–organic framework (EC-MOF)-based artificial synapse. The intrinsic electronic conductivity and subnanometer channels of the EC-MOF facilitate efficient ion diffusion, enable a high density of active redox centers, and significantly enhance capacitance within the artificial synapse. As a result, the synapse operates at an ultralow voltage of 10 mV and exhibits a remarkably low power consumption of approximately 1 fW, along with the longest retention time recorded for two-terminal electrolyte-type artificial synapses to date. The alignment of the quantum size of the subnanometer pores in the EC-MOF with various cations allows for versatile synaptic plasticity. This capability is applied to image refresh, classification, and efferent signal transmission for controlling artificial muscles, thereby offering a methodology for achieving tunable neuromorphic properties. These findings suggest the potential application of metal–organic frameworks in artificial nervous systems for future brain-inspired computation, peripheral interfaces, and neurorobotics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"18 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Electrically Conductive Metal–Organic Framework Boosts Synaptic Plasticity for Dynamic Image Refresh, Classification, and Efferent Neuromuscular Systems\",\"authors\":\"Huanhuan Wei, Jiaqi Liu, Yao Ni, Xuanxin Hu, Xiuliang Lv, Lu Yang, Gang He, Zhipeng Xu, Jiangdong Gong, Chengpeng Jiang, Dawei Feng, Wentao Xu\",\"doi\":\"10.1021/acs.nanolett.4c04650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a two-dimensional (2D) electrically conductive metal–organic framework (EC-MOF)-based artificial synapse. The intrinsic electronic conductivity and subnanometer channels of the EC-MOF facilitate efficient ion diffusion, enable a high density of active redox centers, and significantly enhance capacitance within the artificial synapse. As a result, the synapse operates at an ultralow voltage of 10 mV and exhibits a remarkably low power consumption of approximately 1 fW, along with the longest retention time recorded for two-terminal electrolyte-type artificial synapses to date. The alignment of the quantum size of the subnanometer pores in the EC-MOF with various cations allows for versatile synaptic plasticity. This capability is applied to image refresh, classification, and efferent signal transmission for controlling artificial muscles, thereby offering a methodology for achieving tunable neuromorphic properties. These findings suggest the potential application of metal–organic frameworks in artificial nervous systems for future brain-inspired computation, peripheral interfaces, and neurorobotics.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04650\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04650","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于二维导电金属有机框架(EC-MOF)的人工突触。EC-MOF 的固有电子导电性和亚纳米通道有助于离子的有效扩散,使活性氧化还原中心的密度很高,并显著增强了人工突触内的电容。因此,该突触可在 10 mV 的超低电压下工作,功耗极低(约 1 fW),并且具有迄今为止双端电解质型人工突触所记录的最长保持时间。EC-MOF 中亚纳米孔隙的量子尺寸与各种阳离子相匹配,可实现多种突触可塑性。这种能力被应用于图像刷新、分类和用于控制人造肌肉的传出信号传输,从而提供了一种实现可调神经形态特性的方法。这些发现表明,金属有机框架在人工神经系统中的潜在应用可用于未来的脑启发计算、外围接口和神经机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-Dimensional Electrically Conductive Metal–Organic Framework Boosts Synaptic Plasticity for Dynamic Image Refresh, Classification, and Efferent Neuromuscular Systems
We present a two-dimensional (2D) electrically conductive metal–organic framework (EC-MOF)-based artificial synapse. The intrinsic electronic conductivity and subnanometer channels of the EC-MOF facilitate efficient ion diffusion, enable a high density of active redox centers, and significantly enhance capacitance within the artificial synapse. As a result, the synapse operates at an ultralow voltage of 10 mV and exhibits a remarkably low power consumption of approximately 1 fW, along with the longest retention time recorded for two-terminal electrolyte-type artificial synapses to date. The alignment of the quantum size of the subnanometer pores in the EC-MOF with various cations allows for versatile synaptic plasticity. This capability is applied to image refresh, classification, and efferent signal transmission for controlling artificial muscles, thereby offering a methodology for achieving tunable neuromorphic properties. These findings suggest the potential application of metal–organic frameworks in artificial nervous systems for future brain-inspired computation, peripheral interfaces, and neurorobotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Revealing the Structural Architecture of Anions Confining Mo2CTx MXene Layers for Robust Li+ Storage Rechargeable Afterglow Superclusters for NIR-Excitable Repetitive Phototherapy Control of Surface Plasmon Propagation and Terahertz Near-Field Waveforms in a Scanning Tunneling Microscope Visualizing the Submolecular Organization of αβ-Tubulin Subunits on the Microtubule Inner Surface Using Atomic Force Microscopy Two-Dimensional Electrically Conductive Metal–Organic Framework Boosts Synaptic Plasticity for Dynamic Image Refresh, Classification, and Efferent Neuromuscular Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1